Skip to main content
Log in

Effect of oxygen absorber concentration and temperature on enzyme kinetics–based respiration rate modeling of mango (cv. Amrapali)

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Various experiments were conducted at different storage temperatures and oxygen absorber concentrations to assess the effect of oxygen absorber and temperature on enzyme kinetics–based respiration rate model of mango (cv. Amrapali). Using the principle of enzyme kinetics and the Arrhenius equation, a model was proposed for predicting the respiration rates of mango as a function of O2 and CO2 concentrations with time at a given storage temperature and oxygen absorber concentration. The respiration data were generated using a closed system method. The model parameters calculated from the respiration rate at different O2 and CO2 concentrations were correlated with different storage temperatures using the Arrhenius equation. The activation energy and pre-exponential factors of the Arrhenius equation were used to predict the model parameters at any temperature between 10 and 37 °C and at any oxygen absorber concentration (0cc, 50cc, 100cc, and 150cc). In this model, the dependence of respiration rate on O2 and CO2 was found to follow the uncompetitive type inhibition. The model parameters were found to be significantly affected by oxygen absorber concentration, and storage temperature. The models were tested for their applicability by validating at 27 °C along with 75cc oxygen absorber and found to be in good agreement with the experimentally observed respiration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

E :

Mean relative deviation modulus, %

E a :

Activation energy, kJ g−1mol−1

\( {K}_{{\mathrm{m}}_{\left({\mathrm{O}}_2\right)}} \) :

Michaelis-Menten constant for O2 consumption, % O2

\( {K}_{{\mathrm{m}}_{\left({\mathrm{CO}}_2\right)}} \) :

Michaelis-Menten constant for CO2 evolution, % O2

\( {K}_{{\mathrm{i}}_{\left({\mathrm{O}}_2\right)}} \) :

Inhibition constants for O2 consumption, % CO2

\( {K}_{{\mathrm{i}}_{\left({\mathrm{CO}}_2\right)}} \) :

Inhibition constants for CO2 evolution, % CO2

N :

Number of respiration data points

R :

Universal gas constant, 8.314 kJ kg−1mol−1K−1

\( {\mathrm{R}}_{\mathrm{C}{\mathrm{O}}_2} \) :

Respiration rate, ml [CO2] kg−1h−1

R exp :

Experimental respiration rate, ml kg−1 h−1

R m :

Model parameter of enzyme kinetic

R pre :

Predicted respiration rate, ml kg−1 h−1

\( {R}_{{\mathrm{O}}_2} \) :

Respiration rate, ml [O2] kg−1h−1

R p :

Respiration pre-exponential factor

T :

Storage temperature, °C

T abs :

Storage temperature, K and t is storage time, h

Δt :

Time difference between two gas measurements

V f :

Free volume of the respiration chamber, ml

\( {\mathrm{V}}_{{\mathrm{m}}_{\left({\mathrm{CO}}_2\right)}} \) :

Maximum respiration rate for CO2 evolution, ml/kg-h

\( {V}_{{\mathrm{m}}_{\left({\mathrm{O}}_2\right)}} \) :

Maximum respiration rate for O2 consumption, ml/kg-h

W :

Weight of mango fruit, kg

\( {Y}_{{\mathrm{O}}_2} \) :

Oxygen concentration, decimal

\( {Z}_{\mathrm{C}{\mathrm{O}}_2} \) :

Carbon dioxide concentration, decimal

References

  • Belay, Z. A., Caleb, O. J., & Opara, U. L. (2017). Enzyme kinetics modelling approach to evaluate the impact of high CO2 and super-atmospheric O2 concentrations on respiration rate of pomegranate arils. CyTA-Journal of Food, 15(4), 608–616.

    Article  CAS  Google Scholar 

  • Belay, Z. A., Caleb, O. J., Mahajan, P. V., & Opara, U. L. (2018). Design of active modified atmosphere and humidity packaging (MAHP) for ‘wonderful’pomegranate arils. Food and Bioprocess Technology, 11(8), 1478–1494.

    Article  CAS  Google Scholar 

  • Bhande, S. D., Ravindra, M. R., & Goswami, T. K. (2008). Respiration rate of banana fruit under aerobic conditions at different storage temperatures. Journal of Food Engineering, 87(1), 116–123.

    Article  Google Scholar 

  • Buntong, B., Srilaong, V., Wasusri, T., Kanlayanarat, S., & Acedo Jr., A. L. (2013). Reducing postharvest losses of tomato in traditional and modern supply chains in Cambodia. International Food Research Journal, 20(1), 233.

    Google Scholar 

  • Caleb, O. J., Mahajan, P. V., Opara, U. L., & Witthuhn, C. R. (2012). Modelling the respiration rates of pomegranate fruit and arils. Postharvest Biology and Technology, 64(1), 49–54.

    Article  Google Scholar 

  • Charles, F., Sanchez, J. S., & Gontard, N. (2005). Modeling of active modified atmosphere packaging of endives exposed to several postharvest temperatures. Journal of Food Science, 70(8), e443–e449.

    Article  CAS  Google Scholar 

  • Fonseca, S. C., Oliveira, F. A., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52(2), 99–119.

    Article  Google Scholar 

  • Garner, D., Crisosto, C. H., Wiley, P., & Crisosto, G. M. (2005). Measurement of pH and titratable acidity. Quality Evaluation Methodology. Parlier: Kearney Agricultural Center.

    Google Scholar 

  • Ghosh, T., & Dash, K. K. (2018). Respiration rate model and modified atmosphere packaging of bhimkol banana. Engineering in Agriculture, Environment and Food, 11(4), 186–195.

    Article  Google Scholar 

  • Jalali, A., Seiiedlou, S., Linke, M., & Mahajan, P. (2017). A comprehensive simulation program for modified atmosphere and humidity packaging (MAHP) of fresh fruits and vegetables. Journal of Food Engineering, 206, 88–97.

    Article  CAS  Google Scholar 

  • Liamnimitr, N., Thammawong, M., Techavuthiporn, C., Fahmy, K., Suzuki, T., & Nakano, K. (2018). Optimization of bulk modified atmosphere packaging for long-term storage of ‘Fuyu’persimmon fruit. Postharvest Biology and Technology, 135, 1–7.

    Article  CAS  Google Scholar 

  • Mahajan, P. V., & Caleb, O. J. (2017). Modeling MAP of fruits and vegetables. In Reference module in food science. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21461-3.

    Book  Google Scholar 

  • Mangaraj, S., & Goswami, T. K. (2008). Respiration Rate Modelling of Royal Delicious Apple at Different Storage Temperatures. Fresh Produce, 2(2), 72–80.

    Google Scholar 

  • Mangaraj, S., & Goswami, T. K. (2009a). Modified atmosphere packaging-an ideal food preservation technique. Journal of Food Science and Technology (Mysore), 46(5), 399–410.

    Google Scholar 

  • Mangaraj, S., & Goswami, T. K. (2009b). Modified atmosphere packaging of fruits and vegetables for extending shelf-life-A review. Fresh produce, 3(1), 1–31.

    Google Scholar 

  • Mangaraj, S., & Goswami, T. K. (2011a). Modeling of respiration rate of litchi fruit under aerobic conditions. Food and Bioprocess Technology, 4(2), 272–281.

    Article  Google Scholar 

  • Mangaraj, S., & Goswami, T. K. (2011b). Measurement and modeling of respiration rate of guava (CV. Baruipur) for modified atmosphere packaging. International Journal of Food Properties, 14(3), 609–628.

    Article  CAS  Google Scholar 

  • Mangaraj, S., Goswami, T. K., Giri, S. K., & Tripathi, M. K. (2012). Permselective MA packaging of litchi (cv. Shahi) for preserving quality and extension of shelf-life. Postharvest Biology and Technology, 71, 1–12.

    Article  CAS  Google Scholar 

  • Mangaraj, S., Goswami, T. K., Giri, S. K., Chandra, P., & Pajnoo, R. K. (2013). Development and evaluation of Modified Atmosphere (MA) packages employing lamination technique for Royal Delicious apple. Emirates Journal of Food and Agriculture, 358-375.

  • Mangaraj, S., Goswami, T. K., Giri, S. K., & Joshy, C. G. (2014). Design and development of modified atmosphere packaging system for guava (cv. Baruipur). Journal of Food Science and Technology, 51(11), 2925–2946.

    Article  CAS  Google Scholar 

  • Mangaraj, S., Goswami, T. K., & Panda, D. K. (2015). Modeling of gas transmission properties of polymeric films used for MA packaging of fruits. Journal of Food Science and Technology, 52(9), 5456–5469.

    Article  CAS  Google Scholar 

  • Quintana, E. G. (1984). Changes in mango during growth and maturation. Growth and development of mango. Mango: fruit development, postharvest physiology and marketing in ASEAN, 23-24.

  • Rux, G., Mahajan, P. V., Linke, M., Pant, A., Sängerlaub, S., Caleb, O. J., & Geyer, M. (2016). Humidity-regulating trays: moisture absorption kinetics and applications for fresh produce packaging. Food and Bioprocess Technology, 9(4), 709–716.

    Article  CAS  Google Scholar 

  • Singh, R., Giri, S. K., & Kotwaliwale, N. (2014). Shelf-life enhancement of green bell pepper (Capsicum annuum L.) under active modified atmosphere storage. Food Packaging and Shelf Life, 1(2), 101–112.

    Article  Google Scholar 

  • Sousa, A. R., Oliveira, J. C., & Sousa-Gallagher, M. J. (2017). Determination of the respiration rate parameters of cherry tomatoes and their joint confidence regions using closed systems. Journal of Food Engineering, 206, 13–22.

    Article  Google Scholar 

  • Sousa-Gallagher, M. J., & Mahajan, P. V. (2013). Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation. Food Control, 29(2), 444–450.

    Article  Google Scholar 

  • Strouwen, A., Nicolaï, B. M., & Goos, P. (2019). Optimizing Oxygen Input Profiles for Efficient Estimation of Michaelis-Menten Respiration Models. Food and Bioprocess Technology, 12(5), 769–780.

    Article  CAS  Google Scholar 

  • Thakur, R. R., Shahi, N. C., Mangaraj, S., Lohani, U. C., & Chand, K. (2020). Effect of apple peel based edible coating material on physicochemical properties of button mushrooms (Agaricus bisporus) under ambient condition. International Journal of Chemical Studies, 8(1), 2362–2370. https://doi.org/10.22271/chemi.2020.v8.i1aj.8622.

    Article  CAS  Google Scholar 

  • Toledo, R. T., Singh, R. K., & Kong, F. (2018). Kinetics of chemical reactions in foods. In Fundamentals of food process engineering (pp. 183-194). Cham: Springer.

    Book  Google Scholar 

  • Yang, D., Li, D., Xu, W., Fu, Y., Wu, F., Liao, R., Shi, J., Wang, J., et al. (2018). Effects of packaging design with dual function films on quality of wax apples stored at ambient temperatures. Food and Bioprocess Technology, 11(10), 1904–1910.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Agricultural Research Institute, New Delhi, for needful funding on the research work and also to ICAR-Central Institute of Agricultural Engineering, Bhopal for facilitating the laboratory requirement and mango fruits from its orchard to conduct the research work timely and successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan Thakur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R.R., Mangaraj, S. Effect of oxygen absorber concentration and temperature on enzyme kinetics–based respiration rate modeling of mango (cv. Amrapali). Food Bioprocess Technol 14, 956–967 (2021). https://doi.org/10.1007/s11947-021-02620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02620-3

Keywords

Navigation