Skip to main content

Advertisement

Log in

Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A liposomal vesicular structure is composed of one or more phospholipid bilayers in an aqueous environment. Liposomes are the most popular carriers used to design a delivery system for different compounds in the pharmacological, biochemical, biological, food, and agricultural sectors. Enzymes are commonly used ingredients in food industries, such as bakery, dairy, and beverages. Nevertheless, they are very sensitive to environmental stresses and harsh processing conditions and it is not possible to have a controlled release profile for their free forms. Fortunately, these limitations can be overcome by loading the enzymes in an efficient encapsulation system such as liposomal carriers. Many studies have indicated that the liposomes can be a proper candidate for encapsulation and delivery of enzymes. In this study, preparation and application of food-grade liposomes for encapsulation of a variety of enzymes have been reviewed and discussed. Particularly, application of enzyme-loaded liposomes for acceleration of ripening in different cheeses and various catalyzed reactions by liposomal enzymes have been covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abuin, E., Lissi, E., & Ahumada, M. (2012). Diffusion of hydrogen peroxide across DPPC large unilamellar liposomes. Chemistry and Physics of Lipids, 165(6), 656–661.

    CAS  PubMed  Google Scholar 

  • Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146.

    CAS  Google Scholar 

  • Alkhalaf, W., El Soda, M., Gripon, J.-C., & Vassal, L. (1989). Acceleration of cheese ripening with liposomes-entrapped proteinase: influence of liposomes net charge. Journal of Dairy Science, 72(9), 2233–2238.

    CAS  Google Scholar 

  • Anisha, G. (2017). β-Galactosidases, Current Developments in Biotechnology and Bioengineering (pp. 395–421). Elsevier.

  • Assadpour, E., & Jafari, S. M. (2019a). An overview of biopolymer nanostructures for encapsulation of food ingredients, Biopolymer Nanostructures for Food Encapsulation Purposes (pp. 1–35). Elsevier.

  • Assadpour, E., & Jafari, S. M. (2019b). An overview of lipid-based nanostructures for encapsulation of food ingredients, Lipid-Based Nanostructures for Food Encapsulation Purposes (pp. 1–34). Elsevier.

  • Balbaa, M., & Awad, D. (2018). The use of liposomes in enzymes and drug design: liposomes drug delivery system, Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology (pp. 128–140). IGI Global.

  • Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase—an overview. Biotechnology Advances, 27(4), 489–501.

    CAS  PubMed  Google Scholar 

  • Bao, J., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2003). Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochemical Engineering Journal, 13(1), 69–72.

    CAS  Google Scholar 

  • Barragán, L. P., Buenrostro-Figueroa, J., González, C. A., & Marañon, I. (2016). Production, stabilization, and uses of enzymes from fruit and vegetable byproducts, Biotransformation of Agricultural Waste and By-Products (pp. 271–286). Elsevier.

  • Colas, J. C., Shi, W., Rao, V. S. N. M., Omri, A., Mozafari, M. R., & Singh, H. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 38(8), 841–847.

    CAS  PubMed  Google Scholar 

  • Cui, H., Wu, J., & Lin, L. (2016). Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. Journal of Dairy Science, 99(8), 6097–6104.

    CAS  PubMed  Google Scholar 

  • Cui, H., Yuan, L., Li, W., & Lin, L. (2017). Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef. Food Packaging and Shelf Life, 11, 49–57.

    Google Scholar 

  • Demirci, M., Caglar, M. Y., Cakir, B., & Gülseren, İ. (2017). 3 - Encapsulation by nanoliposomes A2 - Jafari, Seid Mahdi, Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 74–113). Academic Press.

  • Deng, Z., Wang, F., Zhou, B., Li, J., Li, B., & Liang, H. (2019). Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocolloids, 89, 691–699.

    CAS  Google Scholar 

  • Dos Santos VL, Dias-Souza MV (2016) Strategies based on microbial enzymes and surface-active compounds entrapped in liposomes for bacterial biofilm control, Nanobiomaterials in Antimicrobial Therapy. Elsevier, pp 385-418

  • Dua, J., Rana, A., & Bhandari, A. (2012). Liposome: methods of preparation and applications. Int J Pharm Stud Res, 3(2), 14–20.

    Google Scholar 

  • Faridi Esfanjani, A., Assadpour, E., & Jafari, S. M. (2018). Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology, 76, 56–66.

    CAS  Google Scholar 

  • Feng, L., Qiao, Y., Zou, Y., Huang, M., Kang, Z., & Zhou, G. (2014). Effect of flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage. Meat Science, 98(1), 34–40.

    CAS  PubMed  Google Scholar 

  • Galzigna, L., Garbin, L., & Burlina, A. (1979). Liposome-incorporated enzymes: studies on amylase. Clinical Biochemistry, 12(6), 267–269.

    CAS  PubMed  Google Scholar 

  • Garavand, F., Rahaee, S., Vahedikia, N., & Jafari, S. M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science and Technology, 89, 26–44.

    CAS  Google Scholar 

  • Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152.

    CAS  PubMed  Google Scholar 

  • Gombos, L., Kardos, J., Patthy, A., Medveczky, P., Szilágyi, L., Málnási-Csizmadia, A., & Gráf, L. (2008). Probing conformational plasticity of the activation domain of trypsin: the role of glycine hinges. Biochemistry, 47(6), 1675–1684.

    CAS  PubMed  Google Scholar 

  • Gómez-Hens, A., & Fernández-Romero, J. M. (2005). The role of liposomes in analytical processes. TrAC Trends in Analytical Chemistry, 24(1), 9–19.

    Google Scholar 

  • Graça, J., De Oliveira, R., De Moraes, M., & Ferreira, M. (2014). Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase. Bioelectrochemistry, 96, 37–42.

    PubMed  Google Scholar 

  • Haghighat-Kharazi, S., Milani, J. M., Kasaai, M. R., & Khajeh, K. (2018). Microencapsulation of α-amylase in beeswax and its application in gluten-free bread as an anti-staling agent. LWT, 92, 73–79.

    CAS  Google Scholar 

  • Hill, K. J., Kaszuba, M., Creeth, J. E., & Jones, M. N. (1997). Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1326(1), 37–46.

    CAS  Google Scholar 

  • Hsieh, Y. F., Chen, T. L., Wang, Y. T., Chang, J. H., & Chang, H. M. (2002). Properties of liposomes prepared with various lipids. Journal of Food Science, 67(8), 2808–2813.

    CAS  Google Scholar 

  • Hwang, S. Y., Kim, H. K., Choo, J., Seong, G. H., Hien, T. B. D., & Lee, E. (2012). Effects of operating parameters on the efficiency of liposomal encapsulation of enzymes. Colloids and Surfaces B: Biointerfaces, 94, 296–303.

    CAS  PubMed  Google Scholar 

  • Jafari, S. M. (2017). Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press.

  • Jafari, S. M., & McClements, D. J. (2017). Nanotechnology approaches for increasing nutrient bioavailability, Advances in food and nutrition research (pp. 1–30). Elsevier.

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A. A., & Pourhosseini, P. S. (2015). The encapsulation of flavourzyme in nanoliposome by heating method. Journal of Food Science and Technology, 52(4), 2063–2072.

    CAS  PubMed  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Mozafari, M. R., Saboury, A. A., Zoghi, A., & Mohammadi, M. (2016). Modelling of proteolysis in Iranian brined cheese using proteinase-loaded nanoliposome. International Journal of Dairy Technology, 69(1), 57–62.

    CAS  Google Scholar 

  • Jahadi, M., Khosravi-Darani, K., Ehsani, M. R., Colombo Pimentel, T., Gomes da Cruz, A., & Mozafari.M.R. (2020). Accelerating ripening of Iranian white brined cheesesusing liposome-encapsulated and free proteinases. Biointerface Research in Applied Chemistry, 10(1), 4966–4971.

    CAS  Google Scholar 

  • Jones, M. N., Hill, K. J., Kaszuba, M., & Creeth, J. E. (1998). Antibacterial reactive liposomes encapsulating coupled enzyme systems. International Journal of Pharmaceutics, 162(1-2), 107–117.

    CAS  Google Scholar 

  • Kasinathan, N. (2014). Application of experimental design in preparation of nanoliposomes containing hyaluronidase. Journal of Drug Delivery 2014.

  • Kaszuba, M., & Jones, M. N. (1999). Hydrogen peroxide production from reactive liposomes encapsulating enzymes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1419(2), 221–228.

    CAS  Google Scholar 

  • Katouzian, I., & Jafari, S. M. (2016). Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, 53, 34–48.

    CAS  Google Scholar 

  • Kaushal, J., Singh, S. G., Raina, A., & Arya, S. K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatalysis and agricultural biotechnology.

  • Khanniri, E., Bagheripoor-Fallah, N., Sohrabvandi, S., Mortazavian, A. M., Khosravi-Darani, K., & Mohammadi, R. (2015). Application of liposomes in some dairy products. Critical Reviews in Food Science and Nutrition, 56, 484–493.

    Google Scholar 

  • Kheadr, E. E., Vuillemard, J. C., & El Deeb, S. A. (2000). Accelerated Cheddar cheese ripening with encapsulated proteinases. International Journal of Food Science & Technology, 35(5), 483–495.

    CAS  Google Scholar 

  • Kheadr, E., Vuillemard, J. C., & El-Deeb, S. (2002). Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. Journal of Food Science, 67(2), 485–492.

    CAS  Google Scholar 

  • Kheadr, E. E., Vuillemard, J., & El-Deeb, S. (2003). Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Research International, 36(3), 241–252.

    CAS  Google Scholar 

  • Kim, C.-K., Chung, H.-S., Lee, M.-K., Choi, L.-N., & Kim, M.-H. (1999). Development of dried liposomes containing β-galactosidase for the digestion of lactose in milk. International Journal of Pharmaceutics, 183(2), 185–193.

    CAS  PubMed  Google Scholar 

  • Kirby, C., Brooker, B., & Law, B. (1987). Accelerated ripening of cheese using liposome-encapsulated enzyme. International Journal of Food Science & Technology, 22(4), 355–375.

    CAS  Google Scholar 

  • Koshani, R., & Jafari, S. M. (2019). Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 270, 123–146.

    CAS  PubMed  Google Scholar 

  • Labat, E., Morel, M., & Rouau, X. (2000). Effects of laccase and ferulic acid on wheat flour doughs. Cereal Chemistry, 77(6), 823–828.

    CAS  Google Scholar 

  • Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: state of the art. Journal of Colloid Science and Biotechnology, 1(2), 147–168.

    CAS  Google Scholar 

  • Larivière, B., El Soda, M., Soucy, Y., Trépanier, G., Paquin, P., & Vuillemard, J. (1991). Microfluidized liposomes for the acceleration of cheese ripening. International Dairy Journal, 1(2), 111–124.

    Google Scholar 

  • Li, M., Hanford, M. J., Kim, J.-W., & Peeples, T. L. (2007). Amyloglucosidase enzymatic reactivity inside lipid vesicles. Journal of Biological Engineering, 1(1), 4.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Q., & Boyd, B. J. (2013). Liposomes in biosensors. Analyst, 138(2), 391–409.

    CAS  PubMed  Google Scholar 

  • Liu, W., Ye, A., & Singh, H. (2015). Progress in applications of liposomes in food systems, Microencapsulation and microspheres for food applications (pp. 151–170). Elsevier.

  • Macario, A., Verri, F., Diaz, U., Corma, A., & Giordano, G. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catalysis Today, 204, 148–155.

    CAS  Google Scholar 

  • Marsanasco, M., Calabró, V., Piotrkowski, B., Chiaramoni, N. S., & del V. Alonso, S. (2016). Fortification of chocolate milk with omega-3, omega-6, and vitamins E and C by using liposomes. European Journal of Lipid Science and Technology, 118(9), 1271–1281.

  • Martí, M., Zille, A., Paulo, A. C., Parra, J. L., & Coderch, L. (2012). Laccases stabilization with phosphatidylcholine liposomes. Journal of Biophysical Chemistry, 3(1), 81–87.

    Google Scholar 

  • Matsuzaki, M., McCafferty, F., & Karel, M. (1989). The effect of cholesterol content of phospholipid vesicles on the encapsulation and acid resistance of β-galactosidase from E. coli. International Journal of Food Science & Technology, 24(4), 451–460.

    CAS  Google Scholar 

  • Mirafzali, Z., Thompson, C. S., & Tallua, K. (2014). Application of liposomes in the food industry, Microencapsulation in the Food Industry (pp. 139–150). Elsevier.

  • Moghimipour, E., & Handali, S. (2013). Liposomes as drug delivery systems: properties and applications. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(1), 169–185.

    CAS  Google Scholar 

  • Mohammadi, R., Mahmoudzade, M., Atefi, M., Khosravi-Darani, K., & Mozafari, M. (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology, 68(1), 11–23.

    CAS  Google Scholar 

  • Mohan, A., McClements, D. J., & Udenigwe, C. C. (2016). Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: influence of peptide molecular weight. Food Chemistry, 213, 143–148.

    CAS  PubMed  Google Scholar 

  • Olea, D., & Faure, C. (2003). Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity. The Journal of Chemical Physics, 119(12), 6111–6118.

    CAS  Google Scholar 

  • Ozaltin, K., Postnikov, P. S., Trusova, M. E., Sedlarik, V., & Di Martino, A. (2019). Polysaccharides based microspheres for multiple encapsulations and simultaneous release of proteases. International Journal of Biological Macromolecules, 132, 24–31.

    CAS  PubMed  Google Scholar 

  • Perrett, S., Golding, M., & Williams, W. (1991). A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. Journal of Pharmacy and Pharmacology, 43(3), 154–161.

    CAS  PubMed  Google Scholar 

  • Piard, J., El Soda, M., Alkhalaf, W., Rousseau, M., Desmazeaud, M., Vassal, L., & Gripon, J. (1986). Acceleration of cheese ripening with liposome-entrapped proteinase. Biotechnology Letters, 8(4), 241–246.

    CAS  Google Scholar 

  • Picon, A., Gaya, P., Medina, M., & Nunez, M. (1995). The effect of liposome-encapsulated Bacillus subtilis neutral proteinase on Manchego cheese ripening. Journal of Dairy Science, 78(6), 1238–1247.

    CAS  Google Scholar 

  • Prévoteau, A., & Faure, C. (2012). Effect of onion-type multilamellar liposomes on Trametes versicolor laccase activity and stability. Biochimie, 94(1), 59–65.

    PubMed  Google Scholar 

  • Rafiee, Z., & Jafari, S. M. (2018). Application of lipid nanocarriers for the food industry. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive molecules in food (pp. 1–43). Cham: Springer International Publishing.

    Google Scholar 

  • Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2018). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 1–30.

  • Rao, D., Chawan, C., & Veeramachaneni, R. (1994). Liposomal encapsulation of β-galactosidase: comparison of two methods of encapsulation and in vitro lactose digestibility. Journal of Food Biochemistry, 18(4), 239–251.

    Google Scholar 

  • Raveendran, S., Parameswaran, B., Beevi Ummalyma, S., Abraham, A., Kuruvilla Mathew, A., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Nogales, J. M., & López, A. D. (2006). A novel approach to develop β-galactosidase entrapped in liposomes in order to prevent an immediate hydrolysis of lactose in milk. International Dairy Journal, 16(4), 354–360.

    Google Scholar 

  • Sanchez, J. M., & Perillo, M. A. (2000). α-Amylase kinetic parameters modulation by lecithin vesicles: binding versus entrapment. Colloids and Surfaces B: Biointerfaces, 18(1), 31–40.

    CAS  Google Scholar 

  • Sanromán, M., & Deive, F. (2017). Food enzymes, Current Developments in Biotechnology and Bioengineering (pp. 119–142). Elsevier.

  • Sessa, G., & Weissmann, G. (1970). Incorporation of lysozyme into liposomes a model for structure-linked latency. Journal of Biological Chemistry, 245(13), 3295–3301.

    CAS  Google Scholar 

  • Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: progress and limitations. International Journal of Pharmaceutics, 154(2), 123–140.

    CAS  Google Scholar 

  • Shukla, S., Haldorai, Y., Hwang, S. K., Bajpai, V. K., Huh, Y. S., & Han, Y.-K. (2017). Current demands for food-approved liposome nanoparticles in food and safety sector. Frontiers in Microbiology, 8, 2398.

    PubMed  PubMed Central  Google Scholar 

  • Sindhu, R., Binod, P., & Pandey, A. (2017). α-Amylases, Current Developments in Biotechnology and Bioengineering (pp. 3–24). Elsevier.

  • Singh, H., Thompson, A., Liu, W., & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems, Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 287–318). Elsevier.

  • Subramani, T., & Ganapathyswamy, H. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. Journal of Food Science and Technology.

  • Taheri, A., & Jafari, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277–295.

    CAS  PubMed  Google Scholar 

  • Tavakoli, H., Hosseini, O., Jafari, S. M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231–9240.

    CAS  PubMed  Google Scholar 

  • Vafabakhsh, Z., Khosravi-Darani, K., Khajeh, K., Jahadi, M., Komeili, R., & Mortazavian, A. M. (2013). Stability and catalytic kinetics of protease loaded liposomes. Biochemical Engineering Journal, 72, 11–17.

    CAS  Google Scholar 

  • Walde, P., & Ichikawa, S. (2001). Enzymes inside lipid vesicles, preparation, reactivity and applications. Biomolecular Engineering, 18(4), 143–177.

    CAS  PubMed  Google Scholar 

  • Wang, S., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2003). Optimal covalent immobilization of glucose oxidase-containing liposomes for highly stable biocatalyst in bioreactor. Biotechnology and Bioengineering, 83(4), 444–453.

    CAS  PubMed  Google Scholar 

  • Whitehurst, R. J., & Law, B. A. (2002). Enzymes in food technology. Wiley Online Library.

  • Wichmann, C., Naumann, P., Spangenberg, O., Konrad, M., Mayer, F., & Hoppert, M. (2003). Liposomes for microcompartmentation of enzymes and their influence on catalytic activity. Biochemical and Biophysical Research Communications, 310(4), 1104–1110.

    CAS  PubMed  Google Scholar 

  • Yanan, Z., JIANG, Y., Jing, G., Liya, Z., Ying, H., & Fei, J. (2013). Immobilization of glucose oxidase in liposome-templated biomimetic silica particles. Chinese Journal of Catalysis, 34(4), 741–750.

    Google Scholar 

  • Yoshimoto, M., & Higa, M. (2014). A kinetic analysis of catalytic production of oxygen in catalase-containing liposome dispersions for controlled transfer of oxygen in a bioreactor. Journal of Chemical Technology & Biotechnology, 89(9), 1388–1395.

    CAS  Google Scholar 

  • Yoshimoto, M., Sato, M., Wang, S., Fukunaga, K., & Nakao, K. (2006). Structural stability of glucose oxidase encapsulated in liposomes to inhibition by hydrogen peroxide produced during glucose oxidation. Biochemical Engineering Journal, 30(2), 158–163.

    CAS  Google Scholar 

  • Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R., & Nakao, K. (2007). Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzyme and Microbial Technology, 41(6-7), 849–858.

    CAS  Google Scholar 

  • Yoshimoto, M., Sato, M., Yoshimoto, N., & Nakao, K. (2008). Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity. Biotechnology Progress, 24(3), 576–582.

    CAS  PubMed  Google Scholar 

  • Yoshimoto, M., Takaki, N., & Yamasaki, M. (2010). Catalase-conjugated liposomes encapsulating glucose oxidase for controlled oxidation of glucose with decomposition of hydrogen peroxide produced. Colloids and Surfaces B: Biointerfaces, 79(2), 403–408.

    CAS  PubMed  Google Scholar 

  • Yoshimoto, M., Yamashita, T., & Kinoshita, S. (2011). Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide. Enzyme and Microbial Technology, 49(2), 209–214.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Han, Y., & Xiao, H. (2017a). Microbial α-amylase: a biomolecular overview. Process Biochemistry, 53, 88–101.

    CAS  Google Scholar 

  • Zhang, R., Song, X., Liang, C., Yi, X., Song, G., Chao, Y., Yang, Y., Yang, K., Feng, L., & Liu, Z. (2017b). Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials, 138, 13–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adeleh Mohammadi or Seid Mahdi Jafari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Jafari, S.M., Mahoonak, A.S. et al. Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. Food Bioprocess Technol 14, 23–38 (2021). https://doi.org/10.1007/s11947-020-02513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02513-x

Keywords

Navigation