Skip to main content

Liposomes for Nanodelivery Systems in Food Products

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

Nanotechnology has the prospective to offer novel solutions in the agriculture and food sectors. Food nanotechnology is increasingly gaining attention owing to opportunity of further improvements in development of novel and innovative and healthy foods. Nano-structured materials find promising applications in encapsulation of elements in the food and packaging thereof. Polymeric nanoparticles, liposomes, microemulsions, and nanoemulsions are among the nano-structured systems that have embraced the food sector. These materials have a great potential to elevate bio-accessibility, increase dissolving capacity, assisting commendable release, and safeguard food ingredients throughout the process from production to storage. In this chapter, the applications of nanoliposomes for their encapsulation and controlled release of food materials with enhancing the bioavailability are discussed. Additionally, their role as nanodelivery system for nutrients, nutraceuticals, enzymes, and food antimicrobials has been reviewed. Further, an outlook on the recent applications and their prospects in food technology and science has been emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abirami A, Halith S, Pillai K, Anbalagan C (2014) Herbal nanoparticle for anticancer potential—a review. World J Pharm Pharm Sci 3:2123–2132

    Google Scholar 

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  CAS  Google Scholar 

  • Aditya N, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv 35:450–457

    Article  CAS  Google Scholar 

  • Andrew B, Shargel L (2015) Applied biopharmaceutics & pharmacokinetics. Mcgraw-Hill Education-Europe

    Google Scholar 

  • Ball GF (2013) Bioavailability and analysis of vitamins in foods. Springer, Berlin

    Google Scholar 

  • Basnet P, Hussain H, Tho I, Skalko-Basnet N (2012) Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci 101:598–609

    Article  CAS  Google Scholar 

  • Caddeo C et al (2016) Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 513:153–163

    Article  CAS  Google Scholar 

  • Cui H, Zhao C, Lin L (2015) The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu. Food Control 56:128–134

    Article  CAS  Google Scholar 

  • Davis JL et al (2016) Liposomal-encapsulated ascorbic acid: influence on vitamin C bioavailability and capacity to protect against ischemia–reperfusion injury. Nutr Metab Insights 9:NMI-S39764

    Article  Google Scholar 

  • Dev S, Prabhakaran P, Filgueira L, Iyer KS, Raston CL (2012) Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent. Nanoscale 4:2575–2579

    Article  CAS  Google Scholar 

  • Dulbecco P, Savarino V (2013) Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol WJG 19:9256

    Article  Google Scholar 

  • Dziezak JD (1988) Microencapsulation and encapsulated ingredients. Food Technol 42:136

    CAS  Google Scholar 

  • Emami S, Azadmard-Damirchi S, Peighambardoust SH, Valizadeh H, Hesari J (2016) Liposomes as carrier vehicles for functional compounds in food sector. J Exp Nanosci 11:737–759

    Article  CAS  Google Scholar 

  • Fang J-Y, Lee W-R, Shen S-C, Huang Y-L (2006) Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. J Dermatol Sci 42:101–109

    Article  CAS  Google Scholar 

  • Fathi M, Mozafari M-R, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  • Gaysinsky S, Davidson PM, Bruce BD, Weiss J (2005) Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH. J Food Prot 68:1359–1366

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Babazadeh A, Hamishehkar H (2016) Nano-phytosome as a potential food-grade delivery system. Food Biosci 15:126–135

    Article  CAS  Google Scholar 

  • Gibbs F, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Grobmyer SR et al (2011) The promise of nanotechnology for solving clinical problems in breast cancer. J Surg Oncol 103:317–325

    Article  CAS  Google Scholar 

  • Heaney RP (2001) Factors influencing the measurement of bioavailability, taking calcium as a model. J Nutr 131:1344S–1348S

    Article  CAS  Google Scholar 

  • Hong MY, Hartig N, Kaufman K, Hooshmand S, Figueroa A, Kern M (2015) Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr Res 35:251–258

    Article  CAS  Google Scholar 

  • Imran M, Revol-Junelles A-M, Paris C, Guedon E, Linder M, Desobry S (2015) Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin LWT-food. Sci Technol 62:341–349

    CAS  Google Scholar 

  • Johnston CS, Corte C, Swan PD (2006) Marginal vitamin C status is associated with reduced fat oxidation during submaximal exercise in young adults. Nutr Metab 3:35

    Article  Google Scholar 

  • Kakkar V, Singh S, Singla D, Kaur IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 55:495–503

    Article  CAS  Google Scholar 

  • Karimi N, Ghanbarzadeh B, Hamishehkar H, Keivani F, Pezeshki A, Gholian MM (2015) Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application. Appl Food Biotechnol 2:17–27

    CAS  Google Scholar 

  • Keller BC (2001) Liposomes in nutrition. Trends Food Sci Technol 12:25–31

    Article  CAS  Google Scholar 

  • Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H (2012) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 423:419–427

    Article  CAS  Google Scholar 

  • Kressler J, Millard-Stafford M, Warren GL (2011) Quercetin and endurance exercise capacity: a systematic review and meta-analysis. Med Sci Sports Exerc 43:2396–2404

    Article  CAS  Google Scholar 

  • Kumari A, Kumar V, Yadav SK (2012) Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS ONE 7:e41230

    Article  CAS  Google Scholar 

  • Liu W, Ye A, Singh H (2015) Progress in applications of liposomes in food systems. In: Microencapsulation and microspheres for food applications. Elsevier, pp 151–170

    Google Scholar 

  • Marsanasco M, Márquez AL, Wagner JR, Alonso SDV, Chiaramoni NS (2011) Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int 44:3039–3046

    Article  CAS  Google Scholar 

  • More SV, Kumar H, Kang SM, Song S-Y, Lee K, Choi D-K (2013) Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease. Evidence-based complementary and alternative medicine. Article ID 957875, 15 p. https://doi.org/10.1155/2013/957875

    Article  Google Scholar 

  • Mozafari MR (2006) Bioactive entrapment and targeting using nanocarrier technologies: an introduction. In: Nanocarrier technologies. Springer, pp 1–16

    Google Scholar 

  • Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11:833–844

    Article  CAS  Google Scholar 

  • Nieman D, Stear S, Castell L, Burke L (2010) A–Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance: part 15. Br J Sports Med 44:1202–1205

    Article  CAS  Google Scholar 

  • Ota N, Soga S, Shimotoyodome A (2016) Daily consumption of tea catechins improves aerobic capacity in healthy male adults: a randomized double-blind, placebo-controlled, crossover trial. Biosci Biotechnol Biochem 80:2412–2417

    Article  CAS  Google Scholar 

  • Pisani A, Riccio E, Sabbatini M, Andreucci M, Del Rio A, Visciano B (2014) Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: a randomized trial. Nephrol Dial Transpl 30:645–652

    Article  Google Scholar 

  • Qian C, Decker EA, Xiao H, McClements DJ (2013) Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: potential limitations of solid lipid nanoparticles. Food Res Int 52:342–349

    Article  CAS  Google Scholar 

  • Sahin K, Pala R, Tuzcu M, Ozdemir O, Orhan C, Sahin N, Juturu V (2016) Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res 9:147

    Article  CAS  Google Scholar 

  • Shade CW (2016) Liposomes as advanced delivery systems for nutraceuticals. Integr Med Clin J 15:33

    Google Scholar 

  • Shah K, Singh M, Rai AC (2015) Bioactive compounds of tomato fruits from transgenic plants tolerant to drought LWT-Food. Sci Technol 61:609–614

    CAS  Google Scholar 

  • Sharma V, Anandhakumar S, Sasidharan M (2015) Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng, C 56:393–400

    Article  CAS  Google Scholar 

  • Shin J et al (2012) Acid-labile mPEG–vinyl ether–1, 2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and structural effects on hydrolysis rates, DOPE liposome release performance, and pharmacokinetics. Mol Pharm 9:3266–3276

    Article  CAS  Google Scholar 

  • Shindikar A, Singh A, Nobre M, Kirolikar S (2016) Curcumin and resveratrol as promising natural remedies with nanomedicine approach for the effective treatment of triple negative breast cancer. J Oncol 2016:9750785. https://doi.org/10.1155/2016/9750785

    Article  Google Scholar 

  • Shukla S, Haldorai Y, Hwang SK, Bajpai VK, Huh YS, Han Y-K (2017) Current demands for food-approved liposome nanoparticles in food and safety sector. Front Microbiol 8:2398

    Article  Google Scholar 

  • Singh AK, Das J (1998) Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophys Chem 73:155–162

    Article  CAS  Google Scholar 

  • Singh H, Thompson A, Liu W, Corredig M (2012) Liposomes as food ingredients and nutraceutical delivery systems. In: Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Elsevier, pp 287–318

    Google Scholar 

  • Srinivasan VS (2001) Bioavailability of nutrients: a practical approach to in vitro demonstration of the availability of nutrients in multivitamin-mineral combination products. J Nutr 131:1349S–1350S

    Article  CAS  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57:9141–9146

    Article  CAS  Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43

    Article  CAS  Google Scholar 

  • Taylor TM, Weiss J, Davidson PM, Bruce BD (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605

    Article  CAS  Google Scholar 

  • Thompson AK, Couchoud A, Singh H (2009) Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci Technol 89:99–113

    Article  CAS  Google Scholar 

  • Toniazzo T, Peres MS, Ramos AP, Pinho SC (2017) Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci 19:17–25

    Article  CAS  Google Scholar 

  • Wani K, Tarawadi K, Kaul-Ghanekar R (2015) Nanocarriers for delivery of herbal based drugs in breast cancer—an overview. J Nano Res, 29–40

    Article  CAS  Google Scholar 

  • Wilson N, Shah N (2007) Microencapsulation of vitamins. ASEAN Food J 14:1

    Google Scholar 

  • Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, Hu Y (2013) Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. Int J Mol Sci 14:19763–19773

    Article  Google Scholar 

  • Yang S, Liu W, Liu C, Liu W, Tong G, Zheng H, Zhou W (2012) Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization. J Dispers Sci Technol 33:1608–1614

    Article  CAS  Google Scholar 

  • Zhao L, Temelli F, Chen L (2017) Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: effects of anthocyanin and sterol concentrations. J Funct Foods 34:159–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtan Tarwadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasan, V., Chavan, S., Jain, U., Tarwadi, K. (2019). Liposomes for Nanodelivery Systems in Food Products. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_24

Download citation

Publish with us

Policies and ethics