Skip to main content

Advertisement

Log in

Survivability Assessment of Saccharomyces boulardii in a Symbiotic System Using Nutraceuticals and Modified Atmosphere Packaging

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Cereal flakes are the most popular breakfast choices in the segment of ready-to-eat food products and generally consumed with hot milk. Fortification of cereal flakes with probiotics may increase the value addition, but the high temperature of milk limits the use of live microorganisms. The present work aims to develop the thermo-stable probiotic cereal flakes, which can withstand in hot milk up to 80 °C temperature. A coating blend containing Saccharomyces boulardii (109 CFU/mL) and gum Arabic (6% w/v) was applied on various cereal flakes, and the survivability was evaluated in the hot milk. Cornflakes showed better compatibility with the coating mixture by showing maximum survivability of S. boulardii (7.30 log CFU/g) over the control (2.61 log CFU/g). Further, the addition of nutraceuticals such as trehalose, glutathione, and oryzanol in different concentrations to coating mixture was also assessed. The cornflakes containing trehalose (0.4 mg/g) in its coating have resulted in maximum survivability of 7.99 log CFU/g and showed 3.26-fold higher thermo-protective role as compared to control. Sensory analysis showed an increased acceptability of gum Arabic coated cornflakes over the control due to change in viscosity of milk after its addition. SEM analysis clearly differentiated the surface based on treatments given to cornflakes. Modified atmosphere packaging of probiotic cornflakes using a vacuum, nitrogen gas, and air was done and then storage studies were done for 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAGR:

Compound annual growth rate

CF:

Toasted cornflakes (uncoated)

CF + GA:

Toasted cornflakes coated using 6% gum Arabic solution

CF + SB:

Toasted cornflakes coated with S. boulardii solution without using gum Arabic

CF + SB + GA:

Toasted cornflakes coated with S. boulardii and 6% gum Arabic solution

CF + SB + GA + Tre:

Toasted cornflakes coated with S. boulardii, 6% gum Arabic solution, and trehalose 0.4 mg/g of cornflakes

CFU:

Colony forming units

FAO:

Food and Agriculture Organization of the United Nations

FEG-SEM:

Field emission gun-scanning electron microscopy

FSSAI:

Food Safety and Standards Authority of India

GA:

Gum Arabic

GUT:

Genitourinary tract

MAP:

Modified atmosphere packaging

RPM:

Revolution per minute

US-FDA:

United State Food and Drug Administration

YPD:

Yeast extract, peptone, and dextrose

SEM:

Scanning electron microscopy

Tre:

Trehalose

WHO:

World Health Organization

WI:

Whiteness index

References

  • Agarwal, D., Mui, L., Aldridge, E., Mottram, R., McKinney, J., & Fisk, I. D. (2018). The impact of nitrogen gas flushing on the stability of seasonings: volatile compounds and sensory perception of cheese & onion seasoned potato crisps. Food & Function, 9(9), 4730–4741.

    Article  CAS  Google Scholar 

  • An, D. S., Wang, H. J., Jaisan, C., Lee, J. H., Jo, M. G., & Lee, D. S. (2018). Effects of modified atmosphere packaging conditions on quality preservation of powdered infant formula. Packaging Technology and Science, 31(6), 441–446.

    Article  CAS  Google Scholar 

  • Ananthanarayan, L., Dubey, K. K., Muley, A. B., & Singhal, R. S. (2019). Indian traditional foods: Preparation, processing and nutrition. In Traditional Foods (pp. 127–199). Cham: Springer.

    Chapter  Google Scholar 

  • Arguelles, J. C. (1997). Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiology Letters, 146(1), 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT- Food Science and Technology, 63(1), 685–690.

    Article  CAS  Google Scholar 

  • Babiker, R., Elmusharaf, K., Keogh, M. B., & Saeed, A. M. (2018). Effect of gum Arabic (Acacia Senegal) supplementation on visceral adiposity index (VAI) and blood pressure in patients with type 2 diabetes mellitus as indicators of cardiovascular disease (CVD): a randomized and placebo-controlled clinical trial. Lipids in Health and Disease, 17(1), 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bampi, G. B., Backes, G. T., Cansian, R. L., de Matos, F. E., Ansolin, I. M. A., Poleto, B. C., et al. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9(8), 1422–1428.

    Article  CAS  Google Scholar 

  • Calame, W., Weseler, A. R., Viebke, C., Flynn, C., & Siemensma, A. D. (2008). Gum Arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. British Journal of Nutrition, 100(6), 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  • Castellani, F. (2005). Fibregum (Acacia gum) helps reduce the glycemic index of food products. Agro Food Industry Hi-Tech, 16(6), 24–26.

    CAS  Google Scholar 

  • Chawla, R. P. G. R., & Patil, G. R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178–196.

    Article  CAS  Google Scholar 

  • Cherbut, C., Michel, C., Raison, V., Kravtchenko, T., & Severine, M. (2003). Acacia gum is a bifidogenic dietary fibre with high digestive tolerance in healthy humans. Microbial Ecology in Health and Disease, 15(1), 43–50.

    Article  CAS  Google Scholar 

  • Dada, A., Ogbera, A., Ogundele, S., Fasanmade, O., & Ohwovoriole, A. (2015). Glycaemic responses to corn meals in type 2 diabetics and non-diabetic controls. Turkish Journal of Endocrinology and Metabolism, 19(3), 79–82.

    Article  Google Scholar 

  • Daliri, E. B. M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4(2), 56–65.

    Article  Google Scholar 

  • Datta, S., Timson, D. J., & Annapure, U. S. (2017). Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food and Agriculture, 97(9), 3039–3049.

    Article  CAS  PubMed  Google Scholar 

  • Degirmencioglu, N., Gurbuz, O., & Şahan, Y. (2016). The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. Journal of Food Processing and Preservation, 40(4), 798–811.

    Article  CAS  Google Scholar 

  • Demir, E., Dymek, K., & Galindo, F. G. (2018). Technology allowing baby spinach leaves to acquire freezing tolerance. Food and Bioprocess Technology, 11(4), 809–817.

    Article  Google Scholar 

  • Fitriani, V., Permana, L., & Setiaboma, W. (2019). Chemical and physical characterization of cereal flakes formulated with broken rice and banana flour. In IOP Conference Series: Earth and Environmental Science (Vol. 258, no. 1, p. 012003). IOP publishing.

  • Food, U. S. (2014). Drug administration code of Federal Regulations Title 21. Department of Health and Human Services, ed. 21CFR20157. Washington: US Food and Drug Administration.

  • Ghanate, A. S., & Annapure, U. S. (2019). Effect of physicochemical and rheological properties of flour from different local wheat varieties on the quality of varanphal: an Indian traditional product. Journal of Food Science and Technology, 56(6), 3033–3042.

  • Graff, S., Chaumeil, J. C., Boy, P., Lai-Kuen, R., & Charrueau, C. (2008). Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biological and Pharmaceutical Bulletin, 31(2), 266–272.

  • Hamed, A., & Miller, A. C. (2019). Coadministration of probiotics with prescribed antibiotics for preventing Clostridium difficile diarrhea. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine, 26(4), 454–456.

    Article  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Hsiao, H. C., Lian, W. C., & Chou, C. C. (2004). Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agriculture, 84(2), 134–139.

    Article  CAS  Google Scholar 

  • Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: A review. ISRN Nutrition, 2013, 1–7.

  • Koseki, S., & Itoh, K. (2002). Effect of nitrogen gas packaging on the quality and microbial growth of fresh-cut vegetables under low temperatures. Journal of Food Protection, 65(2), 326–332.

    Article  PubMed  Google Scholar 

  • Kudake, D. C., Bhalerao, P. P., Chaudhari, N. S., Muley, A. B., Talib, M. I., & Parate, V. R. (2018). Fortification of wheat flour with ragi flour: effect on physical, nutritional, antioxidant and sensory profile of noodles. Current Research in Nutrition and Food Science, 6(1), 165–173.

    Article  Google Scholar 

  • Kumar, D., & Chattopadhyay, S. (2018). Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. Journal of Experimental Botany, 69(15), 3729–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakritz, J., Leonard, M. J., Eichen, P. A., Rottinghaus, G. E., Johnson, G. C., & Spiers, D. E. (2002). Whole-blood concentrations of glutathione in cattle exposed to heat stress or a combination of heat stress and endophyte-infected tall fescue toxins in controlled environmental conditions. American Journal of Veterinary Research, 63(6), 799–803.

    Article  CAS  PubMed  Google Scholar 

  • Lan, R., Tran, H., & Kim, I. (2017). Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig. Journal of the Science of Food and Agriculture, 97(4), 1335–1341.

    Article  CAS  PubMed  Google Scholar 

  • Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2013). Stability and probiotic properties of Lactobacillus plantarum spray-dried with protein and other protectants. Drying Technology, 31(13–14), 1723–1733.

    Article  CAS  Google Scholar 

  • Lavi, T., Karasik, A., Koren-Morag, N., Kanety, H., Feinberg, M. S., & Shechter, M. (2009). The acute effect of various glycemic index dietary carbohydrates on endothelial function in nondiabetic overweight and obese subjects. Journal of the American College of Cardiology, 53(24), 2283–2287.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H., & Chen, W. (2011). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Applied Microbiology and Biotechnology, 92(3), 609–616.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhang, G., Sun, H., Sun, X., Jiang, N., Rasool, A., Lin, Z., & Li, C. (2014). Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. Bioresource Technology, 170, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • López-Sobaler, A. M., Cuadrado, E. S., Salas, M. G., Peral, Á. S., Jiménez, A. O., & Ortega, R. M. (2019). Role of yogurt in children's breakfast. Nutrición Hospitalaria, 36(3), 40–43.

    PubMed  Google Scholar 

  • Magalhaes, R. S., Popova, B., Braus, G. H., Outeiro, T. F., & Eleutherio, E. C. (2018). The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Research, 18(6), foy066.

    Article  CAS  Google Scholar 

  • Mahfoudhi, N., & Hamdi, S. (2015). Kinetic degradation and storage stability of β-carotene encapsulated by freeze-drying using almond gum and gum Arabic as wall materials. Journal of Food Processing and Preservation, 39(6), 896–906.

    Article  CAS  Google Scholar 

  • Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Desobry, S., & Hardy, J. (1997). Food materials adhesion: a review. Critical Reviews in Food Science and Nutrition, 37(7), 591–619.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J. B., Russo, A., Kinsella, T. J., & Glatstein, E. (1983). Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Research, 43(3), 987–991.

    CAS  PubMed  Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 112, 44–54.

    Article  CAS  Google Scholar 

  • Nwaka, S., Kopp, M., Burgert, M., Deuchler, I., Kienle, I., & Holzer, H. (1994). Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Letters, 344(2–3), 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., & Goyal, A. (2015). Applications of natural polymer gum Arabic: a review. International Journal of Food Properties, 18(5), 986–998.

    Article  CAS  Google Scholar 

  • Pereira, A. L. F., Almeida, F. D. L., Lima, M. A., da Costa, J. M. C., & Rodrigues, S. (2014). Spray-drying of probiotic cashew apple juice. Food and Bioprocess Technology, 7(9), 2492–2499.

    CAS  Google Scholar 

  • Rathod, R. P., & Annapure, U. S. (2017). Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT- Food Science and Technology, 80, 121–130.

    Article  CAS  Google Scholar 

  • Richards, A. B., Krakowka, S., Dexter, L. B., Schmid, H., Wolterbeek, A. P. M., Waalkens-Berendsen, D. H., et al. (2002). Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology, 40(7), 871–898.

    Article  CAS  PubMed  Google Scholar 

  • Shu, G., Wang, Z., Chen, L., Wan, H., & Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT- Food Science and Technology, 90, 70–76.

    Article  CAS  Google Scholar 

  • Singer, M. A., & Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends in Biotechnology, 16(11), 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. P., Ramaswamy, H. S., & Simpson, B. K. (1990). Developments in food packaging technology. Part II. Storage aspects. Trends in Food Science & Technology, 1, 111–118.

    Article  CAS  Google Scholar 

  • Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014). Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food and Bioprocess Technology, 7(5), 1255–1268.

    Article  Google Scholar 

  • Souyoul, S. A., Saussy, K. P., & Lupo, M. P. (2018). Nutraceuticals: a review. Dermatology and Therapy, 8(1), 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Su, Y., Zheng, X., Zhao, Q., Fu, N., Xiong, H., Wu, W. D., & Chen, X. D. (2018). Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. Powder Technology, 358, 87–94.

    Article  CAS  Google Scholar 

  • Tereshina, V. M. (2005). Thermotolerance in fungi: the role of heat shock proteins and trehalose. Microbiology, 74(3), 247–257.

    Article  CAS  Google Scholar 

  • Wang, M., Yang, J., Li, M., Wang, Y., Wu, H., Xiong, L., & Sun, Q. (2019). Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chemistry, 285, 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Zou, M., Yuan, L., Zhu, S., Liu, S., Ge, J., & Wang, C. (2016). Response of osmotic adjustment and ascorbate-glutathione cycle to heat stress in a heat-sensitive and a heat-tolerant genotype of wucai (Brassica campestris L.). Scientia Horticulturae, 211, 87–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the sensory panelists for giving their valuable time and suggestions.

Funding

The research work was supported by the University Grant Commission, Government of India under the BSR scheme, and the Institute of Chemical Technology, Mumbai, India, for availing all the required facilities for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Annapure.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Statement

All authors approved the present study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singu, B.D., Bhushette, P.R. & Annapure, U.S. Survivability Assessment of Saccharomyces boulardii in a Symbiotic System Using Nutraceuticals and Modified Atmosphere Packaging. Food Bioprocess Technol 13, 693–704 (2020). https://doi.org/10.1007/s11947-020-02430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02430-z

Keywords

Navigation