Skip to main content

Advertisement

Log in

Study of the Effect of High Hydrostatic Pressure (HHP) on the Osmotic Dehydration Mechanism and Kinetics of Wumei Fruit (Prunus mume)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Osmotic dehydration (OD) is the most important procedure for obtaining candied wumei (Prunus mume), which is a very popular snack in Eastern Asian countries. This study aims to evaluate the effects of high hydrostatic pressure (HHP) pre-treatment (50–400 MPa) on the mass transfer kinetics and on the water diffusivity of wumei fruit during OD and to investigate the effect on water distribution and cell viability aspects. The results showed that HHP increased initial rate and effective diffusivity of mass transfer values compared to non-treated samples. Time domain nuclear magnetic resonance revealed that, upon HHP treatment, the water redistributed in vacuole, cytoplasm/extracellular spaces, and cell wall/membrane. The application of 400 MPa probably caused some irreversible damages to the cell membranes. The cell viability study determined by fluorescein diacetate staining showed a loss of cell viability at pressures higher than 200 MPa. HHP exhibited an effective pre-treatment to increase mass transfer of wumei fruit during OD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adachi, M., Suzuki, Y., Mizuta, T., Osawa, T., Adachi, T., Osaka, K., Suzuki, K., Shiojima, K., Arai, Y., & Masuda, K. (2007). The “Prunus mume Sieb. Et Zucc” (Ume) is a rich natural source of novel anti-cancer substance. International Journal of Food Properties, 10(2), 375–384.

    Article  CAS  Google Scholar 

  • Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34, 29–43.

    Article  CAS  Google Scholar 

  • Allali, H., Marchal, L., & Vorobiev, E. (2010). Blanching of strawberries by ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology, 3(3), 406–414.

    Article  Google Scholar 

  • Assis, F. R., Morais, R. M., & Morais, A. M. (2016). Mass transfer in osmotic dehydration of food products: comparison between mathematical models. Food Engineering Reviews, 8(2), 116–133.

    Article  Google Scholar 

  • Assis, F. R., Morais, R., & Morais, A. M. (2017). Mathematical modelling of osmotic dehydration kinetics of apple cubes. Journal of Food Processing & Preservation, 41(3), e12895.

    Article  CAS  Google Scholar 

  • Baier, D., Schmitt, C., & Knorr, D. (2015). Changes in functionality of whey protein and micellar casein after high pressure–low temperature treatments. Food Hydrocolloids, 44, 416–423.

    Article  CAS  Google Scholar 

  • Balasubramaniam, V., Martínez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6(1), 435–462.

    Article  CAS  PubMed  Google Scholar 

  • Boonyaratanakornkit, B. B., Park, C. B., & Clark, D. S. (2002). Pressure effects on intra- and intermolecular interactions within proteins. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1595(1–2), 235–249.

    Article  CAS  Google Scholar 

  • Butz, P., Koller, W., Tauscher, B., & Wolf, S. (1994). Ultra-high pressure processing of onions: chemical and sensory changes. LWT- Food Science and Technology, 27(5), 463–467.

    Article  CAS  Google Scholar 

  • Canto, A. C., Costa-Lima, B. R., Suman, S. P., Monteiro, M. L. G., Marsico, E. T., Conte-Junior, C. A., Franco, R. M., Salim, A. P. A., Torrezan, R., & Silva, T. J. (2015). Fatty acid profile and bacteriological quality of caiman meat subjected to high hydrostatic pressure. LWT- Food Science and Technology, 63(2), 872–877.

    Article  CAS  Google Scholar 

  • Castro-Giráldez, M., Tylewicz, U., Fito, P., Dalla Rosa, M., & Fito, P. (2011). Analysis of chemical and structural changes in kiwifruit (Actinidia deliciosa cv Hayward) through the osmotic dehydration. Journal of Food Engineering, 105(4), 599–608.

    Article  CAS  Google Scholar 

  • Chandra, S., & Kumari, D. (2015). Recent development in osmotic dehydration of fruit and vegetables: a review. Critical Reviews in Food Science and Nutrition, 55(4), 552–561.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X.-f., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 7(10), 2782–2792.

    Article  CAS  Google Scholar 

  • Chuda, Y., Ono, H., Ohnishi-Kameyama, M., Matsumoto, K., Nagata, T., & Kikuchi, Y. (1999). Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. Et Zucc). Journal of Agricultural and Food Chemistry, 47(3), 828–831.

    Article  CAS  PubMed  Google Scholar 

  • Corrêa, J. L., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96(4), 498–504.

    Article  Google Scholar 

  • Crank, J. (1979). The mathematics of diffusion. Oxford: Oxford university press.

    Google Scholar 

  • Deliza, R., Rosenthal, A., Abadio, F., Silva, C. H., & Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, 67(1), 241–246.

    Article  Google Scholar 

  • Dellarosa, N., Ragni, L., Laghi, L., Tylewicz, U., Rocculi, P., & Dalla Rosa, M. (2016). Time domain nuclear magnetic resonance to monitor mass transfer mechanisms in apple tissue promoted by osmotic dehydration combined with pulsed electric fields. Innovative Food Science & Emerging Technologies, 37, 345–351.

    Article  Google Scholar 

  • Deng, Y., & Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT- Food Science and Technology, 41(9), 1575–1585.

    Article  CAS  Google Scholar 

  • Denoya, G., Nanni, M., Apóstolo, N., Vaudagna, S., & Polenta, G. (2016). Biochemical and microstructural assessment of minimally processed peaches subjected to high-pressure processing: implications on the freshness condition. Innovative Food Science & Emerging Technologies, 36, 212–220.

    Article  CAS  Google Scholar 

  • Dermesonlouoglou, E., Boulekou, S. & Taoukis, P. (2008). Mass transfer kinetics during osmotic dehydration of cherry tomatoes pre-treated by high hydrostatic pressure. In IV International Symposium on Applications of Modelling as an Innovative Technology in the Agri-Food-Chain: Model-IT 802. pp. 127–133.

  • Dörnenburg, H., & Knorr, D. (1993). Cellular permeabilization of cultured plant tissues by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnology, 7(1), 35–48.

    Article  Google Scholar 

  • Dörnenburg, H., & Knorr, D. (1997). Evaluation of elicitor- and high-pressure-induced enzymatic browning utilizing potato (Solanum tuberosum) suspension cultures as a model system for plant tissues. Journal of Agricultural and Food Chemistry, 45(10), 4173–4177.

    Article  Google Scholar 

  • Duduyemi, O., Ngoddy, P., & Ade-Omowaye, B. (2015). Management of large scale osmotic dehydration solution using the Pearson’s square algorithm. International Journal of Scientific & Technology Research, 4(1), 53–58.

    Google Scholar 

  • Eshtiaghi, M., Stute, R., & Knorr, D. (1994). High-pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science, 59(6), 1168–1170.

    Article  CAS  Google Scholar 

  • Farr, D. (1990). High pressure technology in the food industry. Trends in Food Science and Technology, 1, 14–16.

    Article  Google Scholar 

  • Gonzalez, M. E., & Barrett, D. M. (2010). Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. Journal of Food Science, 75(7), R121–R130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, M., Jernstedt, J., Slaughter, D., & Barrett, D. (2010). Influence of cell integrity on textural properties of raw, high pressure, and thermally processed onions. Journal of Food Science, 75(7), E409–E416.

    Article  CAS  PubMed  Google Scholar 

  • Hills, B., & Duce, S. (1990). The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues. Magnetic Resonance Imaging, 8(3), 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., & Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8.

    Article  Google Scholar 

  • Imahori, Y., Takemura, M., & Bai, J. (2008). Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biology and Technology, 49(1), 54–60.

    Article  CAS  Google Scholar 

  • Kato, M., Hayashi, R., Tsuda, T., & Taniguchi, K. (2002). High pressure-induced changes of biological membrane. The FEBS Journal, 269(1), 110–118.

    CAS  Google Scholar 

  • Luscher, C., Schlüter, O., & Knorr, D. (2005). High pressure–low temperature processing of foods: impact on cell membranes, texture, color and visual appearance of potato tissue. Innovative Food Science & Emerging Technologies, 6(1), 59–71.

    Article  Google Scholar 

  • Marigheto, N., Vial, A., Wright, K., & Hills, B. (2004). A combined NMR and microstructural study of the effect of high-pressure processing on strawberries. Applied Magnetic Resonance, 26(4), 521–531.

    Article  Google Scholar 

  • Mauro, M. A., Dellarosa, N., Tylewicz, U., Tappi, S., Laghi, L., Rocculi, P., & Dalla Rosa, M. (2016). Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chemistry, 195, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • McInerney, J. K., Seccafien, C. A., Stewart, C. M., & Bird, A. R. (2007). Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innovative Food Science & Emerging Technologies, 8(4), 543–548.

    Article  CAS  Google Scholar 

  • Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High pressure effects on protein structure and function. Proteins: Structure, Function, and Genetics, 24(1), 81–91.

    Article  CAS  Google Scholar 

  • Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M., & Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chemistry, 144, 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálvez, A., Arias, V., Tabilo-Munizaga, G., Briones-Labarca, V., Lemus-Mondaca, R., & Di Scala, K. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science & Emerging Technologies, 12(3), 338–343.

    Article  Google Scholar 

  • Nuñez-Mancilla, Y., Pérez-Won, M., Uribe, E., Vega-Gálvez, A., & Di Scala, K. (2013). Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT- Food Science and Technology, 52(2), 151–156.

    Article  CAS  Google Scholar 

  • Núñez-Mancilla, Y., Vega-Gálvez, A., Pérez-Won, M., Zura, L., García-Segovia, P., & Di Scala, K. (2014). Effect of osmotic dehydration under high hydrostatic pressure on microstructure, functional properties and bioactive compounds of strawberry (Fragaria vesca). Food and Bioprocess Technology, 7(2), 516–524.

    Article  CAS  Google Scholar 

  • Palou, E., Lopez-Malo, A., Argaiz, A., & Welti, J. (1994). The use of Peleg's equation to model osmotic concentration of papaya. Drying Technology, 12(4), 965–978.

    Article  Google Scholar 

  • Panarese, V., Laghi, L., Pisi, A., Tylewicz, U., Dalla Rosa, M., & Rocculi, P. (2012). Effect of osmotic dehydration on Actinidia deliciosa kiwifruit: a combined NMR and ultrastructural study. Food Chemistry, 132(4), 1706–1712.

    Article  CAS  Google Scholar 

  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216–1217.

    Article  Google Scholar 

  • Prestamo, G., & Arroyo, G. (1998). High hydrostatic pressure effects on vegetable structure. Journal of Food Science, 63(5), 878–881.

    Article  CAS  Google Scholar 

  • Rastogi, N., & Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science, 63(3), 508–511.

    Article  CAS  Google Scholar 

  • Rastogi, N., Angersbach, A., & Knorr, D. (2000a). Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering, 45(1), 25–31.

    Article  Google Scholar 

  • Rastogi, N., Angersbach, A., Niranjan, K., & Knorr, D. (2000b). Rehydration kinetics of high-pressure pretreated and osmotically dehydrated pineapple. Journal of Food Science, 65(5), 838–841.

    Article  CAS  Google Scholar 

  • Rastogi, N., Raghavarao, K., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science and Technology, 13(2), 48–59.

    Article  CAS  Google Scholar 

  • Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose–salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49(2), 163–173.

    Article  Google Scholar 

  • Santagapita, P., Laghi, L., Panarese, V., Tylewicz, U., Rocculi, P., & Dalla Rosa, M. (2013). Modification of transverse NMR relaxation times and water diffusion coefficients of kiwifruit pericarp tissue subjected to osmotic dehydration. Food and Bioprocess Technology, 6(6), 1434–1443.

    Article  Google Scholar 

  • Santagapita, P. R., Tylewicz, U., Panarese, V., Rocculi, P., & Dalla Rosa, M. (2016). Non-destructive assessment of kiwifruit physico-chemical parameters to optimise the osmotic dehydration process: a study on FT-NIR spectroscopy. Biosystems Engineering, 142, 101–109.

    Article  Google Scholar 

  • Saruyama, N., Sakakura, Y., Asano, T., Nishiuchi, T., Sasamoto, H., & Kodama, H. (2013). Quantification of metabolic activity of cultured plant cells by vital staining with fluorescein diacetate. Analytical Biochemistry, 441(1), 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Schlüter, O., Foerster, J., Geyer, M., Knorr, D., & Herppich, W. B. (2009). Characterization of high-hydrostatic-pressure effects on fresh produce using chlorophyll fluorescence image analysis. Food and Bioprocess Technology, 2(3), 291–299.

    Article  CAS  Google Scholar 

  • Silva, K. S., Fernandes, M. A., & Mauro, M. A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 37–44.

    Article  CAS  Google Scholar 

  • Simpson, R., Ramírez, C., Birchmeier, V., Almonacid, A., Moreno, J., Nuñez, H., & Jaques, A. (2015). Diffusion mechanisms during the osmotic dehydration of granny smith apples subjected to a moderate electric field. Journal of Food Engineering, 166, 204–211.

    Article  Google Scholar 

  • Sinha, N., Hui, Y. H., Evranuz, E. Ö., Siddiq, M., & Ahmed, J. (2010). Handbook of vegetables and vegetable processing. Ames: Wiley.

    Book  Google Scholar 

  • Souraki, B. A., Tondro, H., & Ghavami, M. (2015). Simulation of osmotic dehydration of a spherical material using parabolic and power-law approximation methods. Chemical Engineering Communications, 202(12), 1607–1617.

    Article  CAS  Google Scholar 

  • Tappi, S., Mauro, M. A., Tylewicz, U., Dellarosa, N., Dalla Rosa, M., & Rocculi, P. (2017). Effects of calcium lactate and ascorbic acid on osmotic dehydration kinetics and metabolic profile of apples. Food and Bioproducts Processing, 103, 1–9.

    Article  CAS  Google Scholar 

  • Tauc, P., Mateo, C. R., & Brochon, J.-C. (1998). Pressure effects on the lateral distribution of cholesterol in lipid bilayers: a time-resolved spectroscopy study. Biophysical Journal, 74(4), 1864–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Techakanon, C., Gradziel, T. M., & Barrett, D. M. (2016). Effects of peach cultivar on enzymatic browning following cell damage from high-pressure processing. Journal of Agricultural and Food Chemistry, 64(40), 7606–7614.

    Article  CAS  PubMed  Google Scholar 

  • Traffano-Schiffo, M., Tylewicz, U., Castro-Giraldez, M., Fito, P., Ragni, L., & Dalla Rosa, M. (2016). Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies, 38, 243–251.

    Article  CAS  Google Scholar 

  • Traffano-Schiffo, M. V., Laghi, L., Castro-Giraldez, M., Tylewicz, U., Rocculi, P., Ragni, L., Dalla Rosa, M., & Fito, P. J. (2017a). Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields and monitored by NMR. Food Chemistry, 236, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Traffano-Schiffo, M. V., Laghi, L., Castro-Giraldez, M., Tylewicz, U., Romani, S., Ragni, L., Dalla Rosa, M., & Fito, P. J. (2017b). Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields: internal transport and transformations analyzed by NMR. Innovative Food Science & Emerging Technologies, 41, 259–266.

    Article  CAS  Google Scholar 

  • Tsuji, R., Koizumi, H., & Fujiwara, D. (2011). Effects of a plum (Prunus mume Siebold and Zucc.) ethanol extract on the immune system in vivo and in vitro. Bioscience, Biotechnology, and Biochemistry, 75(10), 2011–2013.

    Article  CAS  PubMed  Google Scholar 

  • Tylewicz, U., Panarese, V., Laghi, L., Rocculi, P., Nowacka, M., Placucci, G., & Dalla Rosa, M. (2011). NMR and DSC water study during osmotic dehydration of Actinidia deliciosa and Actinidia chinensis kiwifruit. Food Biophysics, 6(2), 327–333.

    Article  Google Scholar 

  • Tylewicz, U., Romani, S., Widell, S., & Galindo, F. G. (2013). Induction of vesicle formation by exposing apple tissue to vacuum impregnation. Food and Bioprocess Technology, 6(4), 1099–1104.

    Article  CAS  Google Scholar 

  • Verma, D., Kaushik, N., & Rao, P. S. (2014). Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food and Bioprocess Technology, 7(5), 1281–1297.

    Article  CAS  Google Scholar 

  • Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9), 1654–1673.

    Article  PubMed  Google Scholar 

  • Yan, X.-T., Lee, S.-H., Li, W., Sun, Y.-N., Yang, S.-Y., Jang, H.-D., & Kim, Y.-H. (2014). Evaluation of the antioxidant and anti-osteoporosis activities of chemical constituents of the fruits of Prunus mume. Food Chemistry, 156, 408–415.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Jin, T. Z., Fan, X., & Xu, Y. (2017). Osmotic dehydration of blueberries pretreated with pulsed electric fields: effects on dehydration kinetics, and microbiological and nutritional qualities. Drying Technology, 35(13), 1543–1551.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of Natural Science Foundation of Zhejiang Province (grant no. LZ14C200002). The authors would like to thank the Erasmus+ program for the cooperation between the two universities. P.R. and S.T. would like to acknowledge the INNOFRUVE project (grant number (CUP) J12F16000020009), co-funded by the Emilia-Romagna Region through the POR FESR 2014-2020 funds (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Tappi, S., Wang, C. et al. Study of the Effect of High Hydrostatic Pressure (HHP) on the Osmotic Dehydration Mechanism and Kinetics of Wumei Fruit (Prunus mume). Food Bioprocess Technol 11, 2044–2054 (2018). https://doi.org/10.1007/s11947-018-2165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2165-7

Keywords

Navigation