Skip to main content
Log in

Effect of Microfluidization Condition on Physicochemical Properties and Inhibitory Activity of Nanoemulsion Loaded with Natural Antibacterial Mixture

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the effects of the microfluidic pressure (600–1200 bar) and cycles (2–4) on the inhibitory activity and physicochemical properties of the nanoemulsion loaded with a natural antibacterial mixture (i.e., citral, trans-2-hexen-1-ol, and linalool, 1:1:1 w/w). The current study showed that the microfluidization at 1000 bar for 4 cycles resulted in the most stable antibacterial nanoemulsion with the smallest droplets. In most cases, the cycle had the more significant effect than the pressure on the physicochemical properties of the antibacterial nanoemulsion. The minimal inhibitory concentrations (MICs) for Salmonella Typhi, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes were 2500, 5000, 1250, and 5000 μg/ml, respectively. In general, the microfluidization condition did not significantly affect the ξ-potential and inhibitory activity of the antibacterial nanoemulsion. The microfluidization at 1350 bar and 3 cycles was the overall optimum preparation condition. There was an insignificant (p > 0.05) difference between the experimental and predicted optimum point. This verified the adequacy of the response surface models fitted for explaining the properties of antibacterial nanoemulsion as a function of microfluidization condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anarjan, N., Mirhosseini, H., Baharin, B. S., & Tan, C. P. (2010). Effect of processing conditions on physicochemical properties of astaxanthin nanodispersions. Food Chemistry, 123(2), 477–483.

    Article  CAS  Google Scholar 

  • Anarjan, N., Mirhosseini, H., Baharin, B. S., & Tan, C. P. (2011). Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT-Food Science and Technology, 44(7), 1658–1665.

    Article  CAS  Google Scholar 

  • Artiga-Artigas, M., Acevedo-Fani, A., & Martín-Belloso, O. (2017). Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocolloids, 70, 191–200.

    Article  CAS  Google Scholar 

  • Bajpai, V. K., Baek, K. H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: a review. Food Research International, 45(2), 722–734.

    Article  CAS  Google Scholar 

  • Bhargava, K., Conti, D. S., da Rocha, S. R., & Zhang, Y. (2015). Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiology, 47, 69–73.

    Article  CAS  Google Scholar 

  • Bopp, C. A., Ries, A. A., & Wells, J. G. (1999). Laboratory methods for the diagnosis of epidemic dysentery and cholera. WHO/CDS/CSR/EDC/99.8, 1–108.

  • Carson, C. F., & Riley, T. V. (1995). Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. Journal of Applied Bacteriology, 78(3), 264–269.

    Article  CAS  Google Scholar 

  • Chantrapornchai, W., Clydesdale, F., & McClements, D. J. (1998). Influence of droplet size and concentration on the color of oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 46(8), 2914–2920.

    Article  CAS  Google Scholar 

  • Cheong, J. N., Tan, C. P., Man, Y. B. C., & Misran, M. (2008). α-Tocopherol nanodispersions: preparation, characterization and stability evaluation. Journal of Food Engineering, 89(2), 204–209.

    Article  CAS  Google Scholar 

  • Cheong, K. W., Tan, C. P., Mirhosseini, H., Chin, S. T., Che Man, Y. B., Hamid, N. S. A., Osman, A., & Basri, M. (2011). Optimization of equilibrium headspace analysis of volatile flavor compounds of Malaysian soursop (Annona muricata): comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). Food Chemistry, 125, 1481–1489.

    Article  CAS  Google Scholar 

  • Choi, S. J., Decker, E. A., Henson, L., Popplewell, L. M., & McClements, D. J. (2010). Inhibition of citral degradation in model beverage emulsions using micelles and reverse micelles. Food Chemistry, 122(1), 111–116.

    Article  CAS  Google Scholar 

  • Christensson, J. B., Matura, M., Gruvberger, B., Bruze, M., & Karlberg, A. T. (2010). Linalool–a significant contact sensitizer after air exposure. Contact Dermatitis, 62(1), 32–41.

    Article  CAS  Google Scholar 

  • Chu, B. S., Ichikawa, S., Kanafusa, S., & Nakajima, M. (2007). Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. Journal of the American Oil Chemists' Society, 84(11), 1053–1062.

    Article  CAS  Google Scholar 

  • Chung, C., & McClements, D. J. (2014). Structure–function relationships in food emulsions: improving food quality and sensory perception. Food Structure, 1(2), 106–126.

    Article  Google Scholar 

  • Di Serio, M. G., Di Giacinto, L., Di Loreto, G., Giansante, L., Pellegrino, M., Vito, R., & Perri, E. (2016). Chemical and sensory characteristics of Italian virgin olive oils from Grossa di Gerace cv. European Journal of Lipid Science and Technology, 118(2), 288–298.

    Article  Google Scholar 

  • Floury, J., Desrumaux, A., & Lardieres, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 1(2), 127–134.

    Article  CAS  Google Scholar 

  • Furletti, V. F., Teixeira, I. P., Obando-Pereda, G., Mardegan, R. C., Sartoratto, A., Figueira, G. M., & Höfling, J. F. (2011). Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation. Evidence-based Complementary and Alternative Medicine, 2011, 1–9.

    Article  Google Scholar 

  • Hammer, K. A., & Carson, C. F. (2011). Antibacterial and antifungal activities of essential oils. Chapter 11, Lipids and Essential Oils as Antimicrobial Agents (Halldor Thormar), pp. 255–306.

  • He, W., Tan, Y., Tian, Z., Chen, L., Hu, F., & Wu, W. (2011). Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. International Journal of Nanomedicine, 6, 521–533.

    CAS  Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.

    Article  CAS  Google Scholar 

  • Kanafusa, S., Chu, B. S., & Nakajima, M. (2007). Factors affecting droplet size of sodium caseinate-stabilized O/W emulsions containing β-carotene. European Journal of Lipid Science and Technology, 109(10), 1038–1041.

    Article  CAS  Google Scholar 

  • Ma, Q., Davidson, P. M., & Zhong, Q. (2016). Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin. Food Chemistry, 206, 167–173.

    Article  CAS  Google Scholar 

  • Maa, Y. F., & Hsu, C. C. (1999). Performance of sonication and microfluidization for liquid–liquid emulsification. Pharmaceutical Development and Technology, 4(2), 233–240.

    Article  CAS  Google Scholar 

  • Maswal, M., & Dar, A. A. (2013). Inhibition of citral degradation in an acidic aqueous environment by polyoxyethylene alkylether surfactants. Food Chemistry, 138(4), 2356–2364.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2002a). Colloidal basis of emulsion color. Current Opinion in Colloid & Interface Science, 7(5), 451–455.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2002b). Theoretical prediction of emulsion color. Advances in Colloid and Interface Science, 97(1), 63–89.

    Article  CAS  Google Scholar 

  • Mirhosseini, H., & Tan, C. P. (2009). Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chemistry, 115(1), 324–333.

    Article  CAS  Google Scholar 

  • Mirhosseini H., Tabatabaee Amid B. (2012) Influence of Chemical Extraction Conditions on the Physicochemical and Functional Properties of Polysaccharide Gum from Durian (Durio zibethinus) Seed. Molecules, 17(12), 6465-6480.

  • Moghimi, R., Aliahmadi, A., McClements, D. J., & Rafati, H. (2016). Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT-Food Science and Technology, 71, 69–76.

    Article  CAS  Google Scholar 

  • Muller, R., Peters, K., & Craig, D. (1996). Electron microscopic studies of nanosuspensions—particle shapes as a function of drug and surfactant. In: 23rd international symposium of controlled release of bioactive materials (pp. 925–926).

  • Myer, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiment (pp. 343–350). New York: John Wiley and Sons.

    Google Scholar 

  • Natrajan, D., Srinivasan, S., Sundar, K., & Ravindran, A. (2015). Formulation of essential oil-loaded chitosan–alginate nanocapsules. Journal of Food and Drug Analysis, 23(3), 560–568.

    Article  CAS  Google Scholar 

  • Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  Google Scholar 

  • Nishizawa, K., Hirano, M., Kimura, A., Mochizuki, T., Yamamoto, Y., Yamamura, S., & Momose, Y. (1998). Evaluation of the antimicrobial activity of carbapenem and cephem antibiotics against Pseudomonas aeruginosa isolated from hospitalized patients. Journal of Infection and Chemotherapy, 4(4), 174–176.

    Article  CAS  Google Scholar 

  • Pattnaik, S., Subramanyam, V. R., Bapaji, M., & Kole, C. R. (1996). Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios, 89(358), 39–46.

    Google Scholar 

  • Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000–1008.

    Article  CAS  Google Scholar 

  • Rukayadi, Y., Lee, K., Han, S., Yong, D., & Hwang, J. K. (2009). In vitro activities of panduratin A against clinical Staphylococcus strains. Antimicrobial Agents and Chemotherapy, 53(10), 4529–4532.

    Article  CAS  Google Scholar 

  • Sah, B. N. P., Vasiljevic, T., Mckechnie, S., & Donkor, O. N. (2015). Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: a critical review. Comprehensive Reviews in Food Science and Food Safety, 14(2), 123–138.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2014). Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 37, 292–297.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43, 547–556.

    Article  CAS  Google Scholar 

  • Shimada, T., Endo, T., Fujii, H., Rodríguez, A., Peña, L., & Omura, M. (2014). Characterization of three linalool synthase genes from Citrus unshiu Marc. and analysis of linalool-mediated resistance against Xanthomonas citri subsp. citri and Penicilium italicum in citrus leaves and fruits. Plant Science, 229, 154–166.

    Article  CAS  Google Scholar 

  • Silva, H. D., Cerqueira, M. Â., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology, 5(3), 854–867.

    Article  CAS  Google Scholar 

  • Tan, C. P., & Nakajima, M. (2005). β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chemistry, 92(4), 661–671.

    Article  CAS  Google Scholar 

  • Teo, A., Lee, S. J., Goh, K. K., & Wolber, F. M. (2017). Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chemistry, 221, 1269–1276.

    Article  CAS  Google Scholar 

  • Yang, Y., & McClements, D. J. (2013). Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids, 30(2), 712–720.

    Article  Google Scholar 

  • Yuan, Y., Gao, Y., Mao, L., & Zhao, J. (2008). Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry, 107(3), 1300–1306.

    Article  CAS  Google Scholar 

  • Zhang, Z., Vriesekoop, F., Yuan, Q., & Liang, H. (2014). Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chemistry, 150, 307–312.

    Article  CAS  Google Scholar 

  • Ziani, K., Chang, Y., McLandsborough, L., & McClements, D. J. (2011). Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Journal of Agricultural and Food Chemistry, 59(11), 6247–6255.

    Article  CAS  Google Scholar 

Download references

Funding

We appreciate the financial support by University Putra Malaysia to support this study through Putra grant (GP-IPT/2013/94191600/GRANT PUTRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, E., Mirhosseini, H., Rukayadi, Y. et al. Effect of Microfluidization Condition on Physicochemical Properties and Inhibitory Activity of Nanoemulsion Loaded with Natural Antibacterial Mixture. Food Bioprocess Technol 11, 645–659 (2018). https://doi.org/10.1007/s11947-017-2037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-2037-6

Keywords

Navigation