Skip to main content
Log in

Enhancing the Rheological Performance of Wheat Flour Dough with Glucose Oxidase, Transglutaminase or Supplementary Gluten

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The enzymes glucose oxidase and transglutaminase are frequently used to improve the breadmaking performance of wheat flours, as they have the ability to considerably alter the viscoelastic nature of the gluten network. To evaluate a flour’s breadmaking performance, rheological tests offer an attractive framework. In this study, the rheological impact of adding glucose oxidase or transglutaminase to wheat flour dough is investigated by means of linear oscillatory shear tests, creep-recovery shear tests and startup extensional tests. The former tests reveal that the enzymes render the dough stiffer and enhance its elastic character, until saturation is reached. In the breadmaking process, the use of excessive amounts of enzyme is known to be counterproductive. The strain-hardening index clearly reveals this overcross-linking effect. Besides enzymes, the gluten network can also be reinforced by adding supplementary gluten, which was indeed found to enhance the extent of strain-hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AACC International. (2000). Approved methods of analysis, 11th edition. St. Paul (MN): AACC International.

    Google Scholar 

  • Amemiya, J.I., & Menjivar, J.A. (1992). Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. Journal of Food Engineering, 16(1-2), 91–108.

    Article  Google Scholar 

  • AOAC International. (1995). Official methods of analysis of AOAC international, 16th edition. Washington: AOAC International.

    Google Scholar 

  • Autio, K., Kruus, K., Knaapila, A., Gerber, N., Flander, L., & Buchert, J. (2005). Kinetics of transglutaminase-induced cross-linking of wheat proteins in dough. Journal of Agricultural and Food Chemistry, 53 (4), 1039–1045.

    Article  CAS  Google Scholar 

  • Bagagli, M.P., Jazaeri, S., Bock, J.E., Seetharaman, K., & Sato, H.H. (2014). Effect of transglutaminase, citrate buffer, and temperature on a soft wheat flour dough system. Cereal Chemistry, 91(5), 460–465.

    Article  CAS  Google Scholar 

  • Bankar, S.B., Bule, M.V., Singhal, R.S., & Ananthanarayan, L. (2009). Glucose oxidase - an overview. Biotechnology Advances, 27(4), 489–501.

    Article  CAS  Google Scholar 

  • Basman, A., Köksel, H., & Ng, P.K.W. (2002). Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours. European Food Research and Technology, 215(5), 419–424.

    Article  CAS  Google Scholar 

  • Bauer, N., Koehler, P., Wieser, H., & Schieberle, P. (2003a). Studies on effects of microbial transglutaminase on gluten proteins of wheat. I. Biochemical analysis. Cereal Chemistry, 80(6), 781–786.

    Article  CAS  Google Scholar 

  • Bauer, N., Koehler, P., Wieser, H., & Schieberle, P. (2003b). Studies on effects of microbial transglutaminase on gluten proteins of wheat. II. Rheological properties. Cereal Chemistry, 80(6), 787–790.

    Article  CAS  Google Scholar 

  • Bloksma, A.H. (1975). Thiol and disulfide groups in dough rheology. Cereal Chemistry, 52(3s), 170r–183r.

    Google Scholar 

  • Bonet, A., Rosell, C.M., Caballero, P.A., Gómez, M., Pérez-Munuera, I., & Lluch, M.A. (2006). Glucose oxidase effect on dough rheology and bread quality: a study from macroscopic to molecular level. Food Chemistry, 99(2), 408–415.

    Article  CAS  Google Scholar 

  • Bueno, M.M., Thys, R.C.S., & Rodrigues, R.C. (2016). Microbial enzymes as substitutes of chemical additives in baking wheat flour? Part I: individual effects of nine enzymes on flour dough rheology. Food and Bioprocess Technology, 9(12), 2012–2023.

    Article  CAS  Google Scholar 

  • Caballero, P.A., Bonet, A., Rosell, C.M., & Gómez, M. (2005). Effect of microbial transglutaminase on the rheological and thermal properties of insect damaged wheat flour. Journal of Cereal Science, 42(1), 93–100.

    Article  CAS  Google Scholar 

  • Caballero, P.A., Gómez, M., & Rosell, C.M. (2007a). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1), 42–53.

    Article  CAS  Google Scholar 

  • Caballero, P.A., Gómez, M., & Rosell, C.M. (2007b). Bread quality and dough rheology of enzyme-supplemented wheat flour. European Food Research and Technology, 224(5), 525–534.

    Article  CAS  Google Scholar 

  • Dagdelen, A.F., & Gocmen, D. (2007). Effects of glucose oxidase, hemicellulase and ascorbic acid on dough and bread quality. Journal of Food Quality, 30(6), 1009–1022.

    Article  CAS  Google Scholar 

  • Decamps, K., Joye, I.J., Haltrich, D., Nicolas, J., Courtin, C.M., & Delcour, J.A. (2012a). Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus Niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chemistry, 131(4), 1485–1492.

    Article  CAS  Google Scholar 

  • Decamps, K., Joye, I.J., Courtin, C.M., & Delcour, J.A. (2012b). Glucose and pyranose oxidase improve bread dough stability. Journal of Cereal Science, 55(3), 380–384.

    Article  CAS  Google Scholar 

  • Decamps, K., Joye, I.J., Rakotozafy, L., Nicolas, J., Courtin, C.M., & Delcour, J.A. (2013). The bread dough stability improving effect of pyranose oxidase from Trametes multicolor and glucose oxidase from Aspergillus niger: unraveling the molecular mechanism. Journal of Agricultural and Food Chemistry, 61(32), 7848– 7854.

    Article  CAS  Google Scholar 

  • Dobraszczyk, B., & Morgenstern, M.P. (2003). Rheology and the breadmaking process. Journal of Cereal Science, 38(3), 229– 245.

    Article  CAS  Google Scholar 

  • Dunnewind, B., van Vliet, T., & Orsel, R. (2002). Effect of oxidative enzymes on bulk rheological properties of wheat flour doughs. Journal of Cereal Science, 36(3), 357–366.

    Article  CAS  Google Scholar 

  • Folk, J.E., & Cole, P.W. (1966). Transglutaminase: mechanistic features of the active site as determined by kinetic and inhibitor studies. Biochimica et Biophysica Acta, 122(2), 244–264.

    Article  CAS  Google Scholar 

  • Gerrard, J.A., Fayle, S.E., Brown, P.A., Sutton, K.H., Simmons, L., & Rasiah, I. (2001). Effects of microbial transglutaminase on the wheat proteins of bread and croissant dough. Journal of Food Science, 66(6), 782–786.

    Article  CAS  Google Scholar 

  • Hanft, F., & Koehler, P. (2005). Quantitation of dityrosine in wheat flour and dough by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 53(7), 2418–2423.

    Article  CAS  Google Scholar 

  • Hilhorst, R., Dunnewind, B., Orsel, R., Stegeman, P., van Vliet, T., Gruppen, H., & Schols, H.A. (1999). Baking performance, rheology, and chemical composition of wheat dough and gluten affected by xylanase and oxidative enzymes. Journal of Food Science, 64(5), 808–813.

    Article  CAS  Google Scholar 

  • Huang, W.N., Yuan, Y.L., Kim, Y.S., & Chung, O.K. (2008). Effects of transglutaminase on rheology, microstructure, and baking properties of frozen dough. Cereal Chemistry, 85(3), 301–306.

    Article  CAS  Google Scholar 

  • Kieliszek, M., & Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry. A review. Folia Microbiology, 59(3), 241–250.

    Article  CAS  Google Scholar 

  • Kokelaar, J.J., van Vliet, T., & Prins, A. (1996). Strain hardening properties and extensibility of flour and gluten doughs in relation to breadmaking performance. Journal of Cereal Science, 24(3), 199–214.

    Article  Google Scholar 

  • Kontogiorgos, V. (2011). Microstructure of hydrated gluten network. Food Research International, 44(9), 2582–2586.

    Article  CAS  Google Scholar 

  • Labat, E., Morel, M.H., & Rouau, X. (2001). Effect of laccase and manganese peroxidase on wheat gluten and pentosans during mixing. Food Hydrocolloids, 15(1), 47–52.

    Article  CAS  Google Scholar 

  • Larré, C., Denery-Papini, S., Popineau, Y., Deshayes, G., Desserme, C., & Lefebvre, J. (2000). Biochemical analysis and rheological properties of gluten modified by transglutaminase. Cereal Chemistry, 77(2), 121–127.

    Article  Google Scholar 

  • Läuger, J., Wollny, K., & Huck, S. (2002). Direct strain oscillation: a new oscillatory method enabling measurements at very small shear stresses and strains. Rheologica Acta, 41(4), 356–361.

    Article  Google Scholar 

  • McNaught, A.D., & Wilkinson, A. (1997). Compendium of Chemical Terminology. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Meerts, M., Cardinaels, R., Oosterlinck, F., Courtin, C.M., & Moldenaers, P. (2017). The interplay between the main flour constituents in the rheological behaviour of wheat flour dough. Food and Bioprocess Technology, 10(2), 249–265.

    Article  CAS  Google Scholar 

  • Nonaka, M., Tanaka, H., Okiyama, A., Motoki, M., Ando, H., Umeda, K., & Matsuura, A. (1989). Polymerization of several proteins by Ca+2-independent transglutaminase derived from microorganisms. Agricultural and Biological Chemistry, 53(10), 2619–2623.

    CAS  Google Scholar 

  • Ohtsuka, T., Umezawa, Y., Nio, N., & Kubota, K. (2001). Comparison of deamidation activity of transglutaminases. Journal of Food Science, 66(1), 25–29.

    Article  CAS  Google Scholar 

  • Piber, M., & Koehler, P. (2005). Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. Journal of Agricultural and Food Chemistry, 53(13), 5276–5284.

    Article  CAS  Google Scholar 

  • Poulsen, C., & Høstrup, P.B. (1998). Purification and characterization of a hexose oxidase with excellent strengthening effects in bread. Cereal Chemistry, 75(1), 51–57.

    Article  CAS  Google Scholar 

  • Rasiah, I.A., Sutton, K.H., Low, F.L., Lin, H.-M., & Gerrard, J.A. (2005). Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants. Food Chemistry, 89(3), 325–332.

    Article  CAS  Google Scholar 

  • Rosell, C.M., Wang, J., Aja, S., Bean, S., & Lookhart, G. (2003). Wheat flour proteins as affected by transglutaminase and glucose oxidase. Cereal Chemistry, 80(1), 52–55.

    Article  CAS  Google Scholar 

  • Schiedt, B., Baumann, A., Conde-Petit, B., & Vilgis, T.A. (2013). Short- and long-range interactions governing the viscoelastic properties during wheat dough and model dough development. Journal of Texture Studies, 44(4), 317–332.

    Article  Google Scholar 

  • Šimurina, O.D., Filipčev, B.V., Dapčević Hadnađev, T.R., Ikonić, B.B., & Bodroža Solarov, M.I. (2014). Modification of the rheological properties of substandard quality wheat dough with different doses of selected enzymes. Food and Feed Research, 41(2), 93–102.

    Article  Google Scholar 

  • Steffolani, M.E., Ribotta, P.D., Pérez, G.T., & León, A.E. (2010). Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. Journal of Cereal Science, 51(3), 366–373.

    Article  CAS  Google Scholar 

  • Tilley, K.A., Benjamin, R.E., Bagorogoza, K.E., Okot-Kotber, B.M., Prakash, O., & Kwen, H. (2001). Tyrosine cross-links: molecular basis of gluten structure and function. Journal of Agricultural and Food Chemistry, 49(5), 2627–2632.

    Article  CAS  Google Scholar 

  • Van Bockstaele, F., De Leyn, I., Eeckhout, M., & Dewettinck, K. (2008). Rheological properties of wheat flour dough and the relationship with bread volume. I. Creep-recovery measurements. Cereal Chemistry, 85(6), 753–761.

    Article  Google Scholar 

  • van Vliet, T. (2008). Strain hardening as an indicator of bread-making performance: a review with discussion. Journal of Cereal Science, 48(1), 1–9.

    Article  Google Scholar 

  • Vemulapalli, V., Miller, K.A., & Hoseney, R.C. (1998). Glucose oxidase in breadmaking systems. Cereal Chemistry, 75(4), 439–442.

    Article  CAS  Google Scholar 

  • Veraverbeke, W.S., & Delcour, J.A. (2002). Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Critical Reviews in Food Science and Nutrition, 42(3), 179–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MM is indebted to the Research Foundation - Flanders (FWO) for a doctoral fellowship at KU Leuven. The authors would also like to express their gratitude to the Research Fund KU Leuven (IDO/12/011) for financial support. Nore Struyf and Mohammad Naser Rezaei are also gratefully acknowledged for determining the flour characteristics (protein content, moisture content, optimal mixing time and water absorption). Finally, we would like to thank Ajinomoto Foods Europe S.A.S. for providing us with a free sample of TG (ACTIVA\(^{{\circledR }}\)WM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Meerts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meerts, M., Van Ammel, H., Meeus, Y. et al. Enhancing the Rheological Performance of Wheat Flour Dough with Glucose Oxidase, Transglutaminase or Supplementary Gluten. Food Bioprocess Technol 10, 2188–2198 (2017). https://doi.org/10.1007/s11947-017-1986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1986-0

Keywords

Navigation