Skip to main content
Log in

Techniques for Extraction of Brewer’s Spent Grain Polyphenols: a Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Million tons of brewer’s spent grain (BSG) are annually produced worldwide as brewing industry by-products. BSG represents a valuable source of phenolic compounds, which have attracted much attention due to their diverse health benefits. Relevant strategies have been developed for their efficient extraction, in order to commercially exploit these resources. This review focuses on the current extraction methods used to obtain phenolic compounds from BSG, ranging from more traditional to advanced techniques. The commonly used methods are the conventional solid–liquid extractions, employing organic solvents, alkaline, and enzymatic reactions. However, the inherent difficulties in screening and obtaining these compounds have led to the development of advanced extraction techniques. Pressurized fluid extraction, supercritical extractions, and microwave-assisted and ultrasound-assisted extractions are some of the novel extraction techniques that have been recently explored. These techniques have been mostly applied for phenolic recovery from barley and malt, as well as other types of cereals. In this review, it is shown that these novel techniques may provide an innovative approach to extract phenolics from BSG or related products, following an in-depth discussion on the major strengths and weaknesses identified in each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BSG:

Brewer’s spent grain

SLE:

Solid–liquid extraction

TPC:

Total phenolic content

DW:

Dry weight

GAE:

Gallic acid equivalents

FA:

Ferulic acid

p-CA:

p-Coumaric acid

HBAs:

Hydroxybenzoic acids

HCAs:

Hydroxycinnamic acids

FAE:

Ferulic acid esterase

SE:

Soxhlet extraction

SPE:

Solid-phase extraction

SFE:

Supercritical fluid extraction

PFE:

Pressurized fluid extraction

ASE:

Accelerated solvent extraction

RSM:

Response surface methodology

AX:

Arabinoxylans

AXOS:

Arabinoxylooligosaccharides

References

  • Abdel-Aal, E.-S. M., Akhtar, H., Rabalski, I., & Bryan, M. (2014). Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains. Journal of Food Science, 79(2), C138–C146. doi:10.1111/1750-3841.12346.

    Article  CAS  Google Scholar 

  • Aliyu, S., & Bala, M. (2011). Brewer’s spent grain: a review of its potentials and applications. African Journal of Biotechnology, 10(3), 324–331.

    CAS  Google Scholar 

  • Alonso-Salces, R. M., Korta, E., Barranco, A., Berrueta, L. A., Gallo, B., & Vicente, F. (2001). Pressurized liquid extraction for the determination of polyphenols in apple. Journal of Chromatography A, 933(1–2), 37–43. doi:10.1016/s0021-9673(01)01212-2.

    Article  CAS  Google Scholar 

  • Athanasios, M., Georgios, L., & Michael, K. (2007). A rapid microwave-assisted derivatization process for the determination of phenolic acids in brewer’s spent grains. Food Chemistry, 102(3), 606–611. doi:10.1016/j.foodchem.2006.05.040.

    Article  CAS  Google Scholar 

  • Awolu, O. O., & Ibileke, I. O. (2011). Bioethanol production from brewer’s spent grain, bread wastes and corn fiber. African Journal of Food Science, 5(3), 148–155.

    CAS  Google Scholar 

  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., et al. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering, 117(4), 426–436. doi:10.1016/j.jfoodeng.2013.01.014.

    Article  CAS  Google Scholar 

  • Barbosa-Pereira, L., Pocheville, A., Angulo, I., Paseiro-Losada, P., & Cruz, J. M. (2013). Fractionation and purification of bioactive compounds obtained from a brewery waste stream. BioMed Research International, 2013, 1–11. doi:10.1155/2013/408491.

  • Barros, F., Dykes, L., Awika, J. M., & Rooney, L. W. (2013). Accelerated solvent extraction of phenolic compounds from sorghum brans. Journal of Cereal Science, 58(2), 305–312. doi:10.1016/j.jcs.2013.05.011.

    Article  CAS  Google Scholar 

  • Bartolomé, B., Faulds, C. B., & Williamson, G. (1997). Enzymic release of ferulic acid from barley spent grain. Journal of Cereal Science, 25(3), 285–288. doi:10.1006/jcrs.1996.0091.

    Article  Google Scholar 

  • Bartolomé, B., & Gómez-Cordovés, C. (1999). Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. Journal of the Science of Food and Agriculture, 79(3), 435–439. doi:10.1002/(sici)1097-0010(19990301)79:3<435::aid-jsfa272>3.0.co;2-s.

    Article  Google Scholar 

  • Bartolomé, B., Gómez-Cordovés, C., Sancho, A. I., Díez, N., Ferreira, P., Soliveri, J., et al. (2003). Growth and release of hydroxycinnamic acids from brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme and Microbial Technology, 32(1), 140–144. doi:10.1016/S0141-0229(02)00277-6.

    Article  Google Scholar 

  • Bartolomé, B., Santos, M., Jiménez, J. J., del Nozal, M. J., & Gómez-Cordovés, C. (2002). Pentoses and hydroxycinnamic acids in brewer’s spent grain. Journal of Cereal Science, 36(1), 51–58. doi:10.1006/jcrs.2002.0442.

    Article  CAS  Google Scholar 

  • Belibasakis, N. G., & Tsirgogianni, D. (1996). Effects of wet brewers grains on milk yield, milk composition and blood components of dairy cows in hot weather. Animal Feed Science and Technology, 57(3), 175–181. doi:10.1016/0377-8401(95)00860-8.

    Article  Google Scholar 

  • Bohnsack, C., Ternes, W., Büsing, A., & Drotleff, A. (2011). Tocotrienol levels in sieving fraction extracts of brewer’s spent grain. European Food Research and Technology, 232(4), 563–573. doi:10.1007/s00217-010-1419-z.

    Article  CAS  Google Scholar 

  • Bonoli, M., Marconi, E., & Caboni, M. F. (2004a). Free and bound phenolic compounds in barley (Hordeum vulgare L.) flours: evaluation of the extraction capability of different solvent mixtures and pressurized liquid methods by micellar electrokinetic chromatography and spectrophotometry. Journal of Chromatography A, 1057(1–2), 1–12. doi:10.1016/j.chroma.2004.09.024.

    Article  CAS  Google Scholar 

  • Bonoli, M., Verardo, V., Marconi, E., & Caboni, M. F. (2004b). Antioxidant phenols in barley (Hordeum vulgare L.) flour: comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. Journal of Agricultural and Food Chemistry, 52(16), 5195–5200. doi:10.1021/jf040075c.

    Article  CAS  Google Scholar 

  • Brányik, T., Vicente, A. A., Machado Cruz, J. M., & Teixeira, J. A. (2001). Spent grains—a new support for brewing yeast immobilisation. Biotechnology Letters, 23(13), 1073–1078. doi:10.1023/a:1010558407475.

    Article  Google Scholar 

  • Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40(3–4), 1215–1223. doi:10.1016/j.procbio.2004.04.015.

    Article  CAS  Google Scholar 

  • Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresource Technology, 91(1), 93–100. doi:10.1016/s0960-8524(03)00148-2.

    Article  CAS  Google Scholar 

  • Coelho, E., Rocha, M. A. M., Saraiva, J. A., & Coimbra, M. A. (2014). Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers, 99, 415–422.

    Article  CAS  Google Scholar 

  • Colombo, M. L., Corsini, A., Mossa, A., Sala, L., & Stanca, M. (1998). Supercritical carbon dioxide extraction, fluorimetric and electrochemical high performance liquid chromatrographic detection of vitamin E from Hordeum vulgare L. Phytochemical Analysis, 9(4), 192–195. doi:10.1002/(SICI)1099-1565(199807/08)9:4<192::AID-PCA405>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  • Conde, E., Moure, A., Domínguez, H., & Parajó, J. C. (2008). Fractionation of antioxidants from Autohydrolysis of barley husks. Journal of Agricultural and Food Chemistry, 56(22), 10651–10659. doi:10.1021/jf801710a.

    Article  CAS  Google Scholar 

  • Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352.

    Article  CAS  Google Scholar 

  • Dar, B. N., & Sharma, S. (2011). Total phenolic content of cereal brans using conventional and microwave assisted extraction. American Journal of Food Technology, 6(12), 1045–1053.

    Article  CAS  Google Scholar 

  • de Melo, M. M. R., Silvestre, A. J. D., & Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: applications, trends and future perspectives of a convincing green technology. The Journal of Supercritical Fluids, 92, 115–176. doi:10.1016/j.supflu.2014.04.007.

    Article  CAS  Google Scholar 

  • Dhiman, T. R., Bingham, H. R., & Radloff, H. D. (2003). Production response of lactating cows fed dried versus wet brewers’ grain in diets with similar dry matter Content1,2. Journal of Dairy Science, 86(9), 2914–2921.

    Article  CAS  Google Scholar 

  • Díaz-Reinoso, B., Moure, A., Domínguez, H., & Parajó, J. C. (2006). Supercritical CO2 extraction and purification of compounds with antioxidant activity. Journal of Agricultural and Food Chemistry, 54(7), 2441–2469. doi:10.1021/jf052858j.

    Article  CAS  Google Scholar 

  • Duarte, L., Carvalheiro, F., Lopes, S., Marques, S., Parajo, J., & Gírio, F. (2004). Comparison of two posthydrolysis processes of brewery’s spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Applied Biochemistry and Biotechnology, 115(1–3), 1041–1058. doi:10.1385/ABAB:115:1-3:1041.

    Article  Google Scholar 

  • Dudjak, J., Lachman, J., Miholová, D., Kolihová, D., & Pivec, V. (2004). Effect of cadmium on polyphenol content in young barley plants (Hordeum vulgare L.) Plant Soil and Environment, 50, 471–477.

    CAS  Google Scholar 

  • Dvořáková, M., Guido, L. F., Dostálek, P., Skulilová, Z., Moreira, M. M., & Barros, A. A. (2008a). Antioxidant properties of free, soluble ester and insoluble-bound phenolic compounds in different barley varieties and corresponding malts. Journal of the Institute of Brewing, 114(1), 27–33. doi:10.1002/j.2050-0416.2008.tb00302.x.

    Article  Google Scholar 

  • Dvořáková, M., Moreira, M. M., Dostálek, P., Skulilová, Z., Guido, L. F., & Barros, A. A. (2008b). Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography–ultraviolet detection–electrospray ionization mass spectrometry. Journal of Chromatography A, 1189(1–2), 398–405. doi:10.1016/j.chroma.2007.10.080.

    Article  CAS  Google Scholar 

  • Esclapez, M. D., García-Pérez, J. V., Mulet, A., & Cárcel, J. A. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews, 3(2), 108–120.

    Article  Google Scholar 

  • Faulds, C., Sancho, A., & Bartolomé, B. (2002). Mono- and dimeric ferulic acid release from brewer’s spent grain by fungal feruloyl esterases. Applied Microbiology and Biotechnology, 60(4), 489–494. doi:10.1007/s00253-002-1140-3.

    Article  CAS  Google Scholar 

  • Faulds, C. B., Mandalari, G., Lo Curto, R. B., Bisignano, G., & Waldron, K. W. (2006). Influence of the arabinoxylan composition on the susceptibility of mono- and dimeric ferulic acid release by Humicola insolens feruloyl esterases. Journal of the Science of Food and Agriculture, 86(11), 1623–1630. doi:10.1002/jsfa.2480.

    Article  CAS  Google Scholar 

  • Faulds, C. B., Mandalari, G., LoCurto, R., Bisignano, G., & Waldron, K. W. (2004). Arabinoxylan and mono- and dimeric ferulic acid release from brewer’s grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Applied Microbiology and Biotechnology, 64(5), 644–650. doi:10.1007/s00253-003-1520-3.

    Article  CAS  Google Scholar 

  • Fernandez, M. P., Rodriguez, J. F., Garcia, M. T., de Lucas, A., & Gracia, I. (2008). Application of supercritical fluid extraction to brewer’s spent grain management. Industrial & Engineering Chemistry Research, 47(5), 1614–1619. doi:10.1021/ie0708529.

    Article  CAS  Google Scholar 

  • Ferraz, A. I., Amorim, C., Tavares, T., & Teixeira, J. A. (2015). Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies. International journal of Environmental Science and Technology, 12(5), 1591–1602. doi:10.1007/s13762-014-0539-6.

    Article  CAS  Google Scholar 

  • Fillaudeau, L., Blanpain-Avet, P., & Daufin, G. (2006). Water, wastewater and waste management in brewing industries. Journal of Cleaner Production, 14(5), 463–471. doi:10.1016/j.jclepro.2005.01.002.

    Article  Google Scholar 

  • Forssell, P., Kontkanen, H., Schols, H. A., Hinz, S., Eijsink, V. G. H., Treimo, J., et al. (2008). Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. Journal of the Institute of Brewing, 114(4), 306–314. doi:10.1002/j.2050-0416.2008.tb00774.x.

    Article  CAS  Google Scholar 

  • Fratianni, A., Caboni, M., Irano, M., & Panfili, G. (2002). A critical comparison between traditional methods and supercritical carbon dioxide extraction for the determination of tocochromanols in cereals. European Food Research and Technology, 215(4), 353–358. doi:10.1007/s00217-002-0566-2.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2013). Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food and Bioproducts Processing, 91(C4), 575–579. doi:10.1016/j.fbp.2013.01.004.

    Article  CAS  Google Scholar 

  • Gupta, M., Abu-Ghannam, N., & Gallaghar, E. (2010). Barley for brewing: characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 318–328.

    Article  CAS  Google Scholar 

  • Hernanz, D., Nuñez, V., Sancho, A. I., Faulds, C. B., Williamson, G., Bartolomé, B., et al. (2001). Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. Journal of Agricultural and Food Chemistry, 49(10), 4884–4888. doi:10.1021/jf010530u.

    Article  CAS  Google Scholar 

  • Herrero, M., Castro-Puyana, M., Mendiola, J. A., & Ibañez, E. (2013). Compressed fluids for the extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 43, 67–83. doi:10.1016/j.trac.2012.12.008.

    Article  CAS  Google Scholar 

  • Herrero, M., Mendiola, J. A., Cifuentes, A., & Ibáñez, E. (2010). Supercritical fluid extraction: recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. doi:10.1016/j.chroma.2009.12.019.

    Article  CAS  Google Scholar 

  • Holtekjølen, A. K., Kinitz, C., & Knutsen, S. H. (2006). Flavanol and bound phenolic acid contents in different barley varieties. Journal of Agricultural and Food Chemistry, 54(6), 2253–2260. doi:10.1021/jf052394p.

    Article  CAS  Google Scholar 

  • Huige, N. (2006). Brewery by-products and effluents. In Handbook of Brewing, Second Edition (pp. 655–713, Food Science and Technology). CRC Press.

  • Inglett, G. E., Rose, D. J., Stevenson, D. C., Chen, D., & Biswas, A. (2009). Total phenolics and antioxidant activity of water and ethanolic extracts from distillers dried grains with solubles with or without microwave irradiation. Cereal Chemistry, 86(6), 661–664.

    Article  CAS  Google Scholar 

  • Irakli, M. N., Samanidou, V. F., Biliaderis, C. G., & Papadoyannis, I. N. (2012). Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, 134(3), 1624–1632. doi:10.1016/j.foodchem.2012.03.046.

    Article  CAS  Google Scholar 

  • Jay, A. J., Parker, M. L., Faulks, R., Husband, F., Wilde, P., Smith, A. C., et al. (2008). A systematic micro-dissection of brewers’ spent grain. Journal of Cereal Science, 47(2), 357–364. doi:10.1016/j.jcs.2007.05.006.

    Article  CAS  Google Scholar 

  • Joana Gil-Chávez, G., Villa, J. A., Fernando Ayala-Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., et al. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5–23. doi:10.1111/1541-4337.12005.

    Article  CAS  Google Scholar 

  • Kasperovich, V. L., Grechushkin, A. I., Kupriyanov, A. V., & Miroshnikov, S. A. (2009). Technology of utilizing brewery waste and use of the product obtained for feeding young bulls. Russian Agricultural Sciences, 35(4), 262–265. doi:10.3103/S1068367409040144.

    Article  Google Scholar 

  • Klimek, P., Wimmer, R., Mishra, P. K., & Kudela, J. (2017). Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. Journal of Cleaner Production, 141, 812–817. doi:10.1016/j.jclepro.2016.09.152.

    Article  CAS  Google Scholar 

  • Ktenioudaki, A., Chaurin, V., Reis, S. F., & Gallagher, E. (2012). Brewer’s spent grain as a functional ingredient for breadsticks. International Journal of Food Science & Technology, 47(8), 1765–1771. doi:10.1111/j.1365-2621.2012.03032.x.

    Article  CAS  Google Scholar 

  • Liazid, A., Palma, M., Brigui, J., & Barroso, C. G. (2007). Investigation on phenolic compounds stability during microwave-assisted extraction. Journal of Chromatography A, 1140, 29–34.

    Article  CAS  Google Scholar 

  • Liguori, R., Soccol, C. R., Vandenberghe, L. P. D., Woiciechowski, A. L., & Faraco, V. (2015). Second generation ethanol production from brewers’ spent grain. Energies, 8(4), 2575–2586.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Liew, S. C. (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry, 36(1–2), 59–64. doi:10.1016/S0032-9592(00)00177-1.

    Article  CAS  Google Scholar 

  • Luque de Castro, M. D., & García-Ayuso, L. E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369(1–2), 1–10. doi:10.1016/S0003-2670(98)00233-5.

    Article  CAS  Google Scholar 

  • Mandalari, G., Faulds, C. B., Sancho, A. I., Saija, A., Bisignano, G., LoCurto, R., et al. (2005). Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. Journal of Cereal Science, 42(2), 205–212. doi:10.1016/j.jcs.2005.03.001.

    Article  CAS  Google Scholar 

  • McCarthy, A. L., O’Callaghan, Y. C., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2013a). Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proceedings of the Nutrition Society, 72(01), 117–125. doi:10.1017/S0029665112002820.

    Article  CAS  Google Scholar 

  • McCarthy, A. L., O’Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2012). Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients—assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chemistry, 134(2), 641–646. doi:10.1016/j.foodchem.2012.02.133.

    Article  CAS  Google Scholar 

  • McCarthy, A. L., O’Callaghan, Y. C., Neugart, S., Piggott, C. O., Connolly, A., Jansen, M. A. K., et al. (2013b). The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 141(3), 2567–2574. doi:10.1016/j.foodchem.2013.05.048.

    Article  CAS  Google Scholar 

  • Mendiola, J. A., Herrero, M., Cifuentes, A., & Ibanez, E. (2007). Use of compressed fluids for sample preparation: food applications. Journal of Chromatography A, 1152(1–2), 234–246. doi:10.1016/j.chroma.2007.02.046.

    Article  CAS  Google Scholar 

  • Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology, 108, 152–158. doi:10.1016/j.seppur.2013.02.015.

    Article  CAS  Google Scholar 

  • Milagros Delgado-Zamarreño, M., Bustamante-Rangel, M., Sierra-Manzano, S., Verdugo-Jara, M., & Carabias-Martínez, R. (2009). Simultaneous extraction of tocotrienols and tocopherols from cereals using pressurized liquid extraction prior to LC determination. Journal of Separation Science, 32(9), 1430–1436. doi:10.1002/jssc.200800707.

    Article  CAS  Google Scholar 

  • Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019–1029. doi:10.1007/s00216-011-5703-y.

    Article  CAS  Google Scholar 

  • Moreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382–388. doi:10.1016/j.foodres.2013.07.023.

    Article  CAS  Google Scholar 

  • Mussatto, S., Fernandes, M., Dragone, G., Mancilha, I., & Roberto, I. (2007b). Brewer’s spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnology Letters, 29(12), 1973–1976. doi:10.1007/s10529-007-9494-3.

    Article  CAS  Google Scholar 

  • Mussatto, S. I. (2009). Biotechnological potential of brewing industry by-products. In P. Nigam & A. Pandey (Eds.), Biotechnology for Agro-Industrial Residues Utilisation (pp. 313–326). Netherlands: Springer.

  • Mussatto, S. I. (2014). Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 94(7), 1264–1275.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1–14.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2007a). Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Industrial Crops and Products, 25(2), 231–237. doi:10.1016/j.indcrop.2006.11.001.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Fernandes, M., Mancilha, I. M., & Roberto, I. C. (2008). Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochemical Engineering Journal, 40(3), 437–444. doi:10.1016/j.bej.2008.01.013.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: the Brazilian case. Bioresource Technology, 148, 302–310. doi:10.1016/j.biortech.2013.08.046.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43(5), 540–546. doi:10.1016/j.procbio.2008.01.013.

    Article  CAS  Google Scholar 

  • Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Analytica Chimica Acta, 703(1), 8–18. doi:10.1016/j.aca.2011.07.018.

    Article  CAS  Google Scholar 

  • Okamoto, H., Sato, K., Yagi, N., Inoue, M., Yamasaki, S., Ishida, S., et al. (2002). Development of production process of charcoal bricks from spent grain. Kagaku Kogaku Ronbunshu, 28(2), 137–142.

    Article  CAS  Google Scholar 

  • Omwamba, M., & Hu, Q. (2010). Antioxidant activity in barley (Hordeum vulgareL.) grains roasted in a microwave oven under conditions optimized using response surface methodology. Journal of Food Science, 75(1), C66–C73. doi:10.1111/j.1750-3841.2009.01426.x.

    Article  CAS  Google Scholar 

  • Oufnac, D. S., Xu, Z., Sun, T., Sabliov, C., Prinyawiwatkul, W., & Godber, J. S. (2007). Extraction of antioxidants from wheat bran using conventional solvent and microwave-assisted methods. Cereal Chemistry, 84(2), 125–129.

    Article  CAS  Google Scholar 

  • Panagiotou, G., Granouillet, P., & Olsson, L. (2006). Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Applied Microbiology and Biotechnology, 72(6), 1117–1124. doi:10.1007/s00253-006-0394-6.

    Article  CAS  Google Scholar 

  • Papagiannopoulos, M., Zimmermann, B., Mellenthin, A., Krappe, M., Maio, G., & Galensa, R. (2002). Online coupling of pressurized liquid extraction, solid-phase extraction and high-performance liquid chromatography for automated analysis of proanthocyanidins in malt. Journal of Chromatography A, 958(1–2), 9–16. doi:10.1016/S0021-9673(02)00364-3.

    Article  CAS  Google Scholar 

  • Pedro Silva, J., Sousa, S., Rodrigues, J., Antunes, H., Porter, J. J., Gonçalves, I., et al. (2004). Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Separation and Purification Technology, 40(3), 309–315. doi:10.1016/j.seppur.2004.03.010.

    Article  CAS  Google Scholar 

  • Pereira, C., & Meireles, M. A. (2010). Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3(3), 340–372. doi:10.1007/s11947-009-0263-2.

    Article  CAS  Google Scholar 

  • Pingret, D., Fabiano-Tixier, A. S., Bourvellec, C. L., Renard, C. M. G. C., & Chemat, F. (2012). Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. Journal of Food Engineering, 111(1), 73–81. doi:10.1016/j.jfoodeng.2012.01.026.

    Article  CAS  Google Scholar 

  • Pires, E. J., Ruiz, H. A., Teixeira, J. A., & Vicente, A. A. (2012). A new approach on brewer’s spent grains treatment and potential use as lignocellulosic yeast cells carriers. Journal of Agricultural and Food Chemistry, 60(23), 5994–5999. doi:10.1021/jf300299m.

    Article  CAS  Google Scholar 

  • Pourali, O., Asghari, F. S., & Yoshida, H. (2010). Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chemical Engineering Journal, 160(1), 259–266. doi:10.1016/j.cej.2010.02.057.

    Article  CAS  Google Scholar 

  • Quinde-Axtell, Z., & Baik, B. K. (2006). Phenolic compounds of barley grain and their implication in food product discoloration. Journal of Agricultural and Food Chemistry, 54(26), 9978–9984. doi:10.1021/jf060974w.

    Article  CAS  Google Scholar 

  • Ramos, L., Kristenson, E. M., & Brinkman, U. A. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1), 3–29. doi:10.1016/S0021-9673(02)01336-5.

    Article  CAS  Google Scholar 

  • Reis, S. F., & Abu-Ghannam, N. (2014). Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT - Food Science and Technology, 55(1), 269–277. doi:10.1016/j.lwt.2013.09.004.

    Article  CAS  Google Scholar 

  • Robertson, J. A., I’Anson, K. J. A., Treimo, J., Faulds, C. B., Brocklehurst, T. F., Eijsink, V. G. H., et al. (2010). Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT - Food Science and Technology, 43(6), 890–896. doi:10.1016/j.lwt.2010.01.019.

    Article  CAS  Google Scholar 

  • Roos, A. A., Persson, T., Krawczyk, H., Zacchi, G., & Stalbrand, H. (2009). Extraction of water-soluble hemicelluloses from barley husks. Bioresource Technology, 100(2), 763–769. doi:10.1016/j.biortech.2008.07.022.

    Article  CAS  Google Scholar 

  • Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology, 5(2), 409–424. doi:10.1007/s11947-011-0573-z.

    Article  CAS  Google Scholar 

  • Russ, W., Mörtel, H., & Meyer-Pittroff, R. (2005). Application of spent grains to increase porosity in bricks. Construction and Building Materials, 19(2), 117–126. doi:10.1016/j.conbuildmat.2004.05.014.

    Article  Google Scholar 

  • Santos, M., Jiménez, J. J., Bartolomé, B., Gómez-Cordovés, C., & del Nozal, M. J. (2003). Variability of brewer’s spent grain within a brewery. Food Chemistry, 80(1), 17–21. doi:10.1016/s0308-8146(02)00229-7.

    Article  CAS  Google Scholar 

  • Shivashankar, S., Sumathi, M., Krishnakumar, N. K., & Rao, V. K. (2015). Role of phenolic acids and enzymes of phenylpropanoid pathway in resistance of chayote fruit (Sechium edule) against infestation by melon fly, Bactrocera cucurbitae. Annals of Applied Biology, 166(3), 420–433. doi:10.1111/Aab.12194.

    Article  CAS  Google Scholar 

  • Smeds, A. I., Eklund, P. C., Sjöholm, R. E., Willför, S. M., Nishibe, S., Deyama, T., et al. (2007). Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Journal of Agricultural and Food Chemistry, 55(4), 1337–1346. doi:10.1021/jf0629134.

    Article  CAS  Google Scholar 

  • Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science and Technology, 21, 323–331.

    Article  CAS  Google Scholar 

  • Spinelli, S., Conte, A., & Del Nobile, M. A. (2016a). Microencapsulation of extracted bioactive compounds from brewer’s spent grain to enrich fish-burgers. Food and Bioproducts Processing, 100, 450–456.

    Article  CAS  Google Scholar 

  • Spinelli, S., Conte, A., Lecce, L., Padalino, L., & Del Nobile, M. A. (2016b). Supercritical carbon dioxide extraction of brewer’s spent grain. Journal of Supercritical Fluids, 107, 69–74. doi:10.1016/j.supflu.2015.08.017.

    Article  CAS  Google Scholar 

  • Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268–3295. doi:10.1002/jssc.200700261.

    Article  CAS  Google Scholar 

  • Stevenson, D. G., Inglett, G. E., Chen, D., Biswas, A., Eller, F. J., & Evangelista, R. L. (2008). Phenolic content and antioxidant capacity of supercritical carbon dioxide-treated and air-classified oat bran concentrate microwave-irradiated in water or ethanol at varying temperatures. Food Chemistry, 108(1), 23–30. doi:10.1016/j.foodchem.2007.08.060.

    Article  CAS  Google Scholar 

  • Sun, R., & Sun, X.-F. (2001). Separation and characterization of lipophilic extracts from barley straw. Separation Science and Technology, 36(13), 3027–3048. doi:10.1081/SS-100107644.

    Article  CAS  Google Scholar 

  • Szwajgier, D., Waśko, A., Targoński, Z., Niedźwiadek, M., & Bancarzewska, M. (2010). The use of a novel ferulic acid esterase from Lactobacillus acidophilus K1 for the release of phenolic acids from brewer’s spent grain. Journal of the Institute of Brewing, 116(3), 293–303. doi:10.1002/j.2050-0416.2010.tb00434.x.

    Article  CAS  Google Scholar 

  • Tang, D.-S., Tian, Y.-J., He, Y.-Z., Li, L., Hu, S.-Q., & Li, B. (2010). Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech Journal Food Science, 28, 9–17.

    CAS  Google Scholar 

  • Tang, Z., Cenkowski, S., & Izydorczyk, M. (2005). Thin-layer drying of spent grains in superheated steam. Journal of Food Engineering, 67(4), 457–465. doi:10.1016/j.jfoodeng.2004.04.040.

    Article  Google Scholar 

  • Tang, Z., Cenkowski, S., & Muir, W. E. (2004). Modelling the superheated-steam drying of a fixed bed of brewers’ spent grain. Biosystems Engineering, 87(1), 67–77. doi:10.1016/j.biosystemseng.2003.09.008.

    Article  Google Scholar 

  • Terrasan, C. R. F., Temer, B., Duarte, M. C. T., & Carmona, E. C. (2010). Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology, 101(11), 4139–4143. doi:10.1016/j.biortech.2010.01.011.

    Article  CAS  Google Scholar 

  • Tsubaki, S., Sakamoto, M., & Azuma, J. I. (2010). Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chemistry, 123(4), 1255–1258. doi:10.1016/j.foodchem.2010.05.088.

    Article  CAS  Google Scholar 

  • Valérie, C. (2000). Microwave-assisted solvent extraction of environmental samples. TrAC Trends in Analytical Chemistry, 19(4), 229–248. doi:10.1016/s0165-9936(99)00185-5.

    Article  Google Scholar 

  • Vellingiri, V., Amendola, D., & Spigno, G. (2014). Screening of four different agro-food by-products for the recovery of antioxidants and cellulose. Chemical Engineering Transactions, 37, 757–762.

    Google Scholar 

  • Vichapong, J., Sookserm, M., Srijesdaruk, V., Swatsitang, P., & Srijaranai, S. (2010). High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT - Food Science and Technology, 43(9), 1325–1330. doi:10.1016/j.lwt.2010.05.007.

    Article  CAS  Google Scholar 

  • Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science & Emerging Technologies, 9(2), 161–169. doi:10.1016/j.ifset.2007.04.014.

    Article  CAS  Google Scholar 

  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, C. M. C. G., & Chemat, F. (2010). Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics Sonochemistry, 17(6), 1066–1074. doi:10.1016/j.ultsonch.2009.10.015.

    Article  CAS  Google Scholar 

  • Wang, D., Sakoda, A., & Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology, 78(3), 293–300. doi:10.1016/S0960-8524(01)00002-5.

    Article  CAS  Google Scholar 

  • Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2), 804–810. doi:10.1016/j.foodchem.2007.06.062.

    Article  CAS  Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312. doi:10.1016/j.tifs.2005.12.004.

    Article  CAS  Google Scholar 

  • Wang, X. J., Qi, J. C., Wang, X., & Cao, L. P. (2013). Extraction of polyphenols from barley (Hordeum vulgare L.) grain using ultrasound-assisted extraction technology. [Article]. Asian Journal of Chemistry, 25(3), 1324–1330.

    Google Scholar 

  • Wijngaard, H., Hossain, M. B., Rai, D. K., & Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Research International, 46(2), 505–513. doi:10.1016/j.foodres.2011.09.027.

    Article  CAS  Google Scholar 

  • Xiros, C., & Christakopoulos, P. (2009). Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnology for Biofuels, 2(4), 1–12.

    Google Scholar 

  • Xiros, C., Moukouli, M., Topakas, E., & Christakopoulos, P. (2009). Factors affecting ferulic acid release from brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresource Technology, 100(23), 5917–5921. doi:10.1016/j.biortech.2009.06.018.

    Article  CAS  Google Scholar 

  • Xiros, C., Topakas, E., Katapodis, P., & Christakopoulos, P. (2008). Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Bioresource Technology, 99(13), 5427–5435. doi:10.1016/j.biortech.2007.11.010.

    Article  CAS  Google Scholar 

  • Zigoneanu, I. G., Williams, L., Xu, Z., & Sabliov, C. M. (2008). Determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Bioresource Technology, 99(11), 4910–4918. doi:10.1016/j.biortech.2007.09.067.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (Fundação para a Ciência e a Tecnologia (FCT) through project Pest-C/EQB/LA0006/2013. The work also received financial support from the European Union (FEDER funds) under the framework of QREN through project NORTE-07-0124-FEDER-000069. MMM wishes to acknowledge FCT for her postdoctoral grant (SFRH/BPD/97049/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Guido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guido, L.F., Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: a Review. Food Bioprocess Technol 10, 1192–1209 (2017). https://doi.org/10.1007/s11947-017-1913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1913-4

Keywords

Navigation