Skip to main content
Log in

Data Mining on MRI-Computational Texture Features to Predict Sensory Characteristics in Ham

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, data mining technique was applied on computational texture features obtained from the analysis of magnetic resonance imaging (MRI) of hams, with the main objective of determining sensory attributes of dry-cured ham non-destructively. For that, fresh and dry-cured hams were scanned and then the MRI images were analyzed by three methods of computational texture features. Data mining was applied on the computational texture features from fresh and dry-cured hams for obtaining prediction equations of the sensory attributes of dry-cured hams. The correlation coefficient (R) was used to analyze the results. Accurate prediction was found for 13 sensory attributes as a function of computational texture features of fresh ham, and three from dry-cured ham. In addition, a sensory analysis of dry-cured hams was also carried out to validate the predicted results. Similar values were found between the predicted attributes and those determined by sensory analysis. Thus, it is possible to predict sensory attributes of dry-cured hams by applying data mining on computational texture features of MRI from fresh and dry-cured hams. This supposes the chance of determining non-destructively sensory attributes of dry-cured hams, even before the curing process starts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrés, A. I., Cava, R., Ventanas, J., Thovar, V., & Ruiz, J. (2004). Sensory characteristics of Iberian ham: influence of salt content and processing conditions. Meat Science, 68, 45–51.

    Article  Google Scholar 

  • Antequera, T., Caro, A., Rodríguez, G. P., & Perez, T. (2007). Monitoring the ripening process of Iberian ham by computer vision on magnetic resonance imaging. Meat Science, 76, 561–567.

    Article  Google Scholar 

  • Batista, B. L., Da Silva, L. R. S., Rocha, B. A., Rodrigues, J. L., Beretta-Silva, A. A., Bonates, T. O., et al. (2012). Multi-element determination in Brazilian honey samples by inductively coupled mass spectrometry and estimation of geographic origin with data mining techniques. Food Research International, 29, 209–215.

    Article  Google Scholar 

  • Caro, A., Rodríguez, P. G., Cernadas, E., Durán, M. L., & Villa, E. (2001). Applying active contours to muscle recognition in Iberian ham MRI. In IASTED International Conference Signal Processing, Pattern Recognition and Applications. Rhodes, Greece.

  • Carrapiso, A. I., Bonilla, F., & García, C. (2003). Effect of crossbreeding and rearing system on sensory characteristics of Iberian ham. Meat Science, 65, 623–629.

    Article  Google Scholar 

  • Colton, T. (1974). Statistics in medicine. New York: Little Brown and Company.

    Google Scholar 

  • Cortez, P., Portelinha, S., Rodrigues, S., Cadavez, V., & Teixeira, A. (2006). Lamb meat quality assessment by support vector machines. Neural Processing Letters, 24, 41–51.

    Article  Google Scholar 

  • Cortez, P., Cedeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences by data mining from physicochemical properties. Decision Support System, 47(4), 547–553.

    Article  Google Scholar 

  • Durán, M. L., Rodríguez, P. G., Arias-Nicolás, P. J., Martín, J., & Disdier, C. (2010). A perceptual similarity method by pairwise comparison in a medical image case. Machine Vision and Applications, 21(6), 865–877.

    Article  Google Scholar 

  • Fantazzini, P., Gombia, M., Schembri, P., Simoncini, N., & Virgili, R. (2009). Use of magnetic resonance imaging for monitoring Parma dry-cured ham processing. Meat Science, 82, 219–227.

    Article  CAS  Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. Al Magazine, 17, 37–54.

    Google Scholar 

  • García, C., & Carrapiso, A. I. (2001). La calidad sensorial del jamón Ibérico y su evaluación: La cala y la cata del jamón. In J. Ventanas (Ed.), Tecnología del jamón Ibérico (pp. 391–418). Madrid: Mundi Prensa.

    Google Scholar 

  • Graening, L., & Sendhoff, B. (2014). Shape mining, a holistic data mining approach for engineering design. Advanced Engineering Informatics, 28(2), 166–185.

    Article  Google Scholar 

  • Grassi, S., Amigo, J. M., Lyndgaard, C. B., Foschino, R., & Casiraghi, E. (2014). Beer fermentation: monitoring of process parameters by FT-NIR and multivariated data analysis. Food Chemistry, 155, 279–286.

    Article  CAS  Google Scholar 

  • Haralick, R. M., & Shapiro, L. G. (1993). Computer and robot vision. Chicago: Addison-Wesley.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data mining, inference and prediction. New York: Springer.

    Book  Google Scholar 

  • Holmes, G., Fletcher, D., & Reutermann, P. (2012). An application of data mining to fruit and vegetable sample identification using gas chromatography-mass spectrometry. In International Congress on Environmental Modeling and Software Managing Resources of a Limited Planet. Leipzig, Germany.

  • Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Proceedings 9th International Conference on Machine Learning. Aberdeen, Scotland.

  • Klaypradith, W., Kerdpiboon, S., & Singh, R. K. (2010). Application of artificial neural networks to predict the oxidation of menhaden fish oil obtained from Fourier transform infrared spectroscopy method. Food and Bioprocess Technology, 4(3), 475–480.

    Article  Google Scholar 

  • Lufkin, R. B. (1998). The MRI manual. St Louis, Missouri: Mosby-Year Book.

  • Manzoco, L., Anese, M., Marzona, S., Innocente, N., Lagazio, C., & Nicoli, M. C. (2013). Monitoring dry-curing of S. Daniele ham by magnetic resonance imaging. Food Chemistry, 141, 2246–2252.

    Article  Google Scholar 

  • Mitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM, 42, 30–36.

    Article  Google Scholar 

  • Molano, R., Rodríguez, P. G., Caro, A., & Durán, M. L. (2012). Finding the largest area rectangle of arbitrary orientation in a closed contour. Applied Mathematics and Computation, 218(19), 9866–9874.

    Article  Google Scholar 

  • Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: a literature analysis from 2002 to 2013 using text mining and latent Dirichlett allocation. Expert System with Applications, 42(3), 1314–1324.

    Article  Google Scholar 

  • Paramasivam, V., Sing Yee, T., Dhillon, S. K., & Shidu, A. S. (2014). A methodological review of data mining techniques in predictive medicine: an application in hemodynamic prediction for abdominal aortic aneurysm disease. Biocibernetics and Biomedical Engineering, 34(3), 139–145.

    Article  Google Scholar 

  • Perez-Palacios, T., Ruiz, J., Tejeda, J. F., & Antequera, T. (2009). Subcutaneous and intramuscular lipid traits as tools for classifying Iberian pigs as a function of their feeding background. Meat Science, 81, 632–640.

    Article  CAS  Google Scholar 

  • Perez-Palacios, T., Ruiz, J., Barat, J. M., Aristoy, M. C., & Antequera, T. (2010a). Influence of pre-cure freezing of Iberian ham on proteolytic changes throughout the ripening process. Meat Science, 85, 121–126.

    Article  CAS  Google Scholar 

  • Perez-Palacios, T., Antequera, T., Durán, M. L., Caro, A., Rodríguez, P. G., & Ruiz, J. (2010b). MRI-based analysis, lipid composition and sensory traits for studying Iberian dry-cured hams from pigs fed with different diets. Food Research International, 43, 248–254.

    Article  CAS  Google Scholar 

  • Perez-Palacios, T., Ruiz, J., Martín, D., Barat, J. M., & Antequera, T. (2011a). Pre-cure freezing effect on physicochemical, texture and sensory characteristics of Iberian ham. Food Science and Technology International, 17, 127–133.

    Article  CAS  Google Scholar 

  • Perez-Palacios, T., Antequera, T., Durán, M. L., Caro, A., Rodríguez, P. G., & Palacios, R. (2011b). MRI-based analysis of feeding background effect on fresh Iberian ham. Food Chemistry, 126, 1366–1372.

    Article  CAS  Google Scholar 

  • Perez-Palacios, T., Caballero, D., Caro, A., Rodriguez, P. G., & Antequera, T. (2014). Applying data mining and computer vision techniques to MRI to estimate quality traits in Iberian hams. Journal of Food Engineering, 131, 82–88.

    Article  Google Scholar 

  • Ruiz, J., Ventanas, J., Cava, R., Timon, M. L., & Garcia, C. (1998). Sensory characteristics of Iberian ham: influence of processing time and slice location. Food Research International, 31, 53–58.

    Article  Google Scholar 

  • Ruiz, J., García, C., Muriel, E., Andrés, A. I., & Ventanas, J. (2002). Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Science, 61, 347–354.

    Article  CAS  Google Scholar 

  • Sayad, S. (2011). Real time data mining. Canada: Self-Help Publishers.

    Google Scholar 

  • Song, Y. H., Kim, S. J., & Lee, S. K. (2002). Evaluation of ultrasound for prediction of carcass meat yield and meat quality in Korean native cattle. Asian Journal Animal Science, 15(4), 591–595.

    Article  Google Scholar 

  • Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision. Pacific Grove: PWS Publishing.

    Google Scholar 

  • Sun, C., & Wee, G. (1982). Neighboring gray level dependence matrix. Computer Vision Graphics and Image Processing, 23, 341–352.

    Article  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques with Java implementations. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Wu, X., Kumar, V., Quinlan Ross, J., Ghosh, J., Ghosh, J., Yang, Q., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14, 1–37.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding received for this research from the Junta de Extremadura (Regional Government Board—research projects 3PR05B027 and PDT08A021; Consejería de Economía, Comercio e Innovación and FEDER—economic support for researcher groups: GRU09148 and GRU09025), the Spanish Government (National Research Plan), and the European Union (FEDER funds) by means of the grant reference TIN2008-03063. We also wish to thank the “Hermanos Roa” company from Villar del Rey (Badajoz), as well as the “Infanta Cristina” University Hospital Radiology Service, specially Ramón Palacios, M.D., for their direct contribution and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinidad Perez-Palacios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caballero, D., Antequera, T., Caro, A. et al. Data Mining on MRI-Computational Texture Features to Predict Sensory Characteristics in Ham. Food Bioprocess Technol 9, 699–708 (2016). https://doi.org/10.1007/s11947-015-1662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1662-1

Keywords

Navigation