Skip to main content
Log in

Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (∼30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., & Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European Journal of Clinical Microbiology and Infectious Diseases, 30(1), 41–50.

    Article  CAS  Google Scholar 

  • ASTM (2002). D 3985–02 standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. In ASTM Book of Standards, 15, 09.

    Google Scholar 

  • ASTM (2011). Standard test methods for water vapour transmission of materials. Standard designations: annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials.

    Google Scholar 

  • Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., & Chalier, P. (2006). Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology, 43, 149–154.

    Article  CAS  Google Scholar 

  • Bhaskara, M. V., AitBarka, E., Castaigne, F., & Arul, J. (1998). Effect of chitosan on growth and toxin production by Alternaria alternate f. Sp. Lycopersici. Biocontrol Science and Technology, 8, 33–43.

    Article  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  Google Scholar 

  • Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Carvalho, S., Quintas, M. A. C., Teixeira, J. A., & Vicente, A. A. (2010). Physical and termal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82, 153–159.

    Article  CAS  Google Scholar 

  • Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effects of interactions between the constituents of chitosan-edible films on their physical properties. Food and Bioprocess Technology, 5(8), 3181–3192.

    Article  CAS  Google Scholar 

  • Cho, S. Y., Park, J. W., & Rhee, C. (2002). Properties of laminated films from whey powder and sodium caseinate mixtures and zein layers. Food Science and Technology., 35, 135–139.

    CAS  Google Scholar 

  • Cooksey, K., Marsh, K. S., & Doar, L. H. (1999). Predicting permeability and transmission rate for multilayer materials. Food Technology, 53(9), 60–63.

    Google Scholar 

  • Decher, G., and Schlenoff, J.B. (2003). Multilayer thin films: sequential assembly of nanocomposite materials. Weinheim, Germany:Wiley-VCH. p 543

  • Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372–379.

    Article  CAS  Google Scholar 

  • Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein prolamine. Food Hydrocolloids, 32, 106–114.

    Article  CAS  Google Scholar 

  • Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1–9.

    Article  CAS  Google Scholar 

  • Fu, J., Ji, J., Yuan, W., & Shen, J. (2005). Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials, 26, 6684–6692.

  • García-Rincón, J., Vega-Pérez, J., Guerra-Sánchez, M. G., Hernández-Lauzardo, A. N., Peña-Díaz, A., & Velázquez-Del Valle, M. G. (2010). Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pesticide Biochemistry and Physiology, 97(3), 275–278.

    Article  Google Scholar 

  • Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20, 577–585.

    Article  CAS  Google Scholar 

  • Hinrichsen, G., Hoffmann, A., Schleeh, T., & Macht, C. (2003). Continuous production of ultrathin polymeric nanofilms using the spontaneous film formation technique. Advances in Polymer Technology, 22(2), 120–125.

    Article  CAS  Google Scholar 

  • Hou, Z., Gao, Y., Yuan, F., Liu, Y., Li, C., & Xu, D. (2010). Investigation into the physicochemical stability and rheological properties of beta-carotene emulsion stabilized by soybean soluble polysaccharides and chitosan. Journal of Agriculture and Food Chemistry, 58(15), 8604–8611.

    Article  CAS  Google Scholar 

  • Jang, W.-S., Rawson, I., & Grunlan, J. C. (2008). Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films, 516(15), 4819–4826.

    Article  CAS  Google Scholar 

  • Jost, V., Kobsik, K., Schmid, M., & Noller, K. (2014). Influence of plasticizer on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydrate Polymers, 309-319.

  • Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids, 22, 373–386.

    Article  CAS  Google Scholar 

  • Kurek, M., Guinault, A., Voilley, A., Galic, K., & Debeaufort, F. (2014). Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings. Food Chemistry, 144, 9–17.

    Article  CAS  Google Scholar 

  • Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.

    Article  CAS  Google Scholar 

  • Li, K. K., Yin, S. W., Yang, X. Q., Tang, C. H., & Wei, Z. H. (2012). Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein–sodium caseinate (SC) nanoparticles. Journal of Agricultural and Food Chemistry, 60, 11592–11600.

    Article  CAS  Google Scholar 

  • Li, C., Huang, W. Y., Wang, X. N., & Liu, W. X. (2013). Oxygen radical absorbance capacity of different varieties of strawberry and the antioxidant stability in storage. Molecules, 18(2), 1528–1539.

    Article  CAS  Google Scholar 

  • Luo, Y. C., Zhang, B., Whent, M., Yu, L. L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of alpha-tocopherol, and its in vitro controlled release study. Colloids and Surfurce B: Biointerfaces, 85(2), 145–152.

    Article  CAS  Google Scholar 

  • Luo, C. J., Stride, E., & Edirisinghe, M. (2012). Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules, 45(11), 4669–4680.

    Article  CAS  Google Scholar 

  • McHugh, T. H., Avena-Bustillos, R. J., & Krochta, J. M. (1993). Hydrophilic edible film: modified procedure for water vapor permeability and explanation of thickness effects. Journal Food Science, 58(4), 899–903.

    Article  CAS  Google Scholar 

  • Medeiros, B. G. S., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2012). Polysaccharide/protein nanomultilayer coatings: construction, characterization and evaluation of their effect on ‘Rocha’ pear (Pyrus communis L.) shelf-life. Food and Bioprocess Technology, 5, 2435–2445.

    Article  CAS  Google Scholar 

  • Medeiros, B. G. S., Souza, M. P., Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2013). Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘coalho’ cheese shelf life. Food and Bioprocess Technology, 7(4), 1088–1098.

    Article  Google Scholar 

  • Newman, A. W., & Kwok, D. Y. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid andInterface Science, 81, 167–249.

    Article  Google Scholar 

  • Nostro, A., & Papalia, T. (2012). Antimicrobial activity of carvacrol: current progress and future prospective. Recent Patents on Anti-Infective Drug Discovery, 7(1), 28–35.

    Article  CAS  Google Scholar 

  • Odeniyi, O. A., Onilude, A. A., & Ayodele, M. A. (2009). Growth and substrate utilization patterns of a Rhizopus stolonifer strain isolated from depolymerizing rice husk. World Applied Sciences Journal, 6(5), 595–599.

    CAS  Google Scholar 

  • Patel, A. R., Bouwens, E. C., & Velikov, K. P. (2010). Sodium caseinate stabilized zein colloidal particles. Journal of Agriculture and Food Chemistry, 58(23), 12497–12503.

    Article  CAS  Google Scholar 

  • Peng, J. B., Barnes, G. T., & Gentle, I. R. (2001). The structures of langmuir-blodgett films of fatty acids and their salts. Advances in Colloid and Interface Science, 91, 163–219.

    Article  CAS  Google Scholar 

  • Pinheiro, A. C., Bourbon, A. I., Medeiros, B. G. D. S., Da Silva, L. H. M., Da Silve, M. C. H., Carneiro-da-Cunha, M. G., Coimbra, M. A., & Vicente, A. A. (2012). Interactions between κ-carrageenan and chitosan in nanolayered coatings—structural and transport properties. Carbohydrate Polymers, 1081-1090.

  • Rao, A., Zhang, Y. Q., Muend, S., & Rao, R. (2010). Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial Agents Chemotherafy, 54(12), 5062–5069.

    Article  CAS  Google Scholar 

  • Rodríguez-Núñez, J. R., Madera-Santana, T. J., Sánchez-Machado, D. I., López-Cervantes, J., & Soto Valdez, H. (2014). Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. Journal of Polymers and the Environment, 22(1), 41–51.

    Article  Google Scholar 

  • Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47, 67–77.

    Article  CAS  Google Scholar 

  • Sánchez-Dominguez, D., Bautista-Baños, S., & Castillo-Ocampo, P. (2007). Efecto del quitosano en el desarrollo y morfología de Alternaria alternata (Fr) Keissl. Anales de Biología, 29, 23–32.

    Google Scholar 

  • Sánchez-Dominguez, D., Rios, M. Y., Castillo-Ocampo, P., Zavala-Padilla, G., Ramos-García, M., & Bautista-Baños, S. (2011). Cytological and biochemical changes induced by chitosan in the pathosystem Alternaria alternata-tomato. Pesticide Biochemistry and Physiology, 99, 250–255.

    Article  Google Scholar 

  • Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and heir inhibitory action on Penicillium italicum. Carbohydrate Polymer, 82, 277–283.

    Article  Google Scholar 

  • Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films base don hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 98, 443–452.

    Article  Google Scholar 

  • Saravanan, M., & Rao, K. P. (2010). Pectin-gelatin and alginate-gelatin complex coacervation for controlled drug delivery: influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydrate Polymers, 80(3), 808–816.

    Article  CAS  Google Scholar 

  • Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiolgy, 68(4), 1561–1568.

    Article  CAS  Google Scholar 

  • Weis, J., Takhistow, P., & McClements, J. (2006). Functional materials on food nanotechnology. Journal of Food Science, 9, 107–116.

    Article  Google Scholar 

  • Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letter of Applied Microbiology, 47(3), 174–179.

    Article  CAS  Google Scholar 

  • Zabka, M., & Pavela, R. (2013). Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93, 1051–1056.

    Article  CAS  Google Scholar 

  • Zhang, Y., Niu, Y., Luo, Y., Ge, M., Yang, T., & Yu, L. (2014). Fabrication, characterization and antimicrobial activities of thymol loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry, 142, 269–275.

    Article  CAS  Google Scholar 

  • Zhong, Y., Li, Y., & Haynie, D. (2006). Control of stability of polypeptide multilayer nanofilms by quantitative control of disulfide bond formation. Nanotechnology, 17, 5726–5734.

    Article  CAS  Google Scholar 

  • Zhong, Q., Tian, H., & Zivanovic, S. (2009). Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. Journal of Food Processing and Preservation, 33(2), 255–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from FP7 IP project “ECOBIOCAP”. M. J. Fabra is recipients of a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitivity. Maria L. Flores-López thanks Mexican Science and Technology Council (CONACyT, Mexico) for PhD fellowship support (CONACyT Grant Number 215499/310847). The author Miguel A. Cerqueira is a recipient of a fellowship (SFRH/BPD/72753/2010) supported by Fundação para a Ciência e Tecnologia, POPH-QREN and FSE (FCT, Portugal). The authors also thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,” REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER. The support of EU Cost Action FA0904 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María José Fabra or Miguel A. Cerqueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabra, M.J., Flores-López, M.L., Cerqueira, M.A. et al. Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity. Food Bioprocess Technol 9, 471–480 (2016). https://doi.org/10.1007/s11947-015-1646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1646-1

Keywords

Navigation