Skip to main content
Log in

Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work has examined the influence of ultrasonic-assisted air-drying on the dehydration of apple (Malus domestica L. var Royal Gala) and its influence in the availability of vitamins A, B1, B2, B3, B5, B6, and E of the dried product. This study also has estimated the effective water diffusivity in air-drying process subjected to ultrasonic waves. The water effective diffusivity increased by up to 79 % by ultrasound application, which caused a reduction of about 35 % in the total drying time compared to the air-drying without sonication. The application of ultrasound increased the availability of vitamins B1, B2, B3, and B6 in the dried product. A loss of vitamins B5 and E were observed for all studied drying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Half-length of the cubic sample (m)

ABSSample :

Sample (dried apple) absorbance

ABSReference :

Control (raw apple) absorbance

D :

Effective diffusivity (m2/s)

t :

Time (s)

W :

Average moisture content of the fruit (gwater/gdry solids)

W crit :

Critical moisture content (gwater/gdry solids)

W eq :

Equilibrium moisture content (gwater/gdry solids)

References

  • Ball, G. F. M. (2006). Vitamins in foods: Analysis, bioavailability, and stability (p. 785). Boca Raton: CRC Press.

    Google Scholar 

  • Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007a). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479. doi:10.1016/j.jfoodeng.2005.10.018.

    Article  Google Scholar 

  • Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007b). Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25, 185–193.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed., p. 414). Glasgow: Oxfort University Press.

    Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.

    Article  Google Scholar 

  • Farrer, K. T. H. (1955). The thermal destruction of vitamin B1 in foods. Advances in Food Research, 6, 257–311.

    CAS  Google Scholar 

  • Fernandes, F. A. N., & Rodrigues, S. (2008). Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26(12), 1509–1516. doi:10.1080/07373930802412256.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049–1054. doi:10.1016/j.ultsonch.2008.03.009.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2010). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185. doi:10.1007/s11947-010-0323-7.

    Article  Google Scholar 

  • García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Mulet, A. (2006a). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, 258-260, 563–574.

  • García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006b). Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics, 44(Suppl 1), e539–e543. doi:10.1016/j.ultras.2006.06.059.

    Article  Google Scholar 

  • García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27, 281–287.

    Article  Google Scholar 

  • Ghosh, H. P., Sarkar, P. K., & Guha, B. C. (1963). Distribution of the bound form of nicotinic acid in natural materials. The Journal of Nutrition, 79, 451–453.

    CAS  Google Scholar 

  • Greenwood, D. A., Kraybill, H. R., Feaster, J. F., & Jackson, J. M. (1944). Vitamin retention in processed meat. Industrial and Engineering Chemistry, 36, 922–927.

    Article  CAS  Google Scholar 

  • Gregory, J. F., III. (1985). Chemical changes of vitamins during food processing. In T. Richardson & J. W. Finley (Eds.), Chemical changes in food during processing (pp. 373–408). New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • Gregory, J. F., III, & Hiner, M. (1983). Thermal stability of vitamin B6 compounds in liquid model food systems. Journal of Food Science, 48, 1323–1327.

    Article  CAS  Google Scholar 

  • Jedlicka, A., & Klimes, J. (2005). Determination of water- and fat-soluble vitamins in different matrices using high-performance liquid chromatography. Chemical Papers, 59, 202–222.

    CAS  Google Scholar 

  • Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495–506. doi:10.1016/j.fbp.2013.05.003.

    Article  Google Scholar 

  • Merrill, A. H., Lambeth, J. D., Edmondson, D. E., & McCormick, D. B. (1981). Formation and mode of action of flavoproteins. Annual Review of Nutrition, 1, 281–317.

    Article  CAS  Google Scholar 

  • Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113, 427–433. doi:10.1016/j.jfoodeng.2012.06.013.

    Article  Google Scholar 

  • Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food and Bioprocess Technology, 4(4), 610–615. doi:10.1007/s11947-010-0351-3.

    Article  Google Scholar 

  • Ortuño, C., Perez-Munuera, I., Puig, A., Riera, E., & García-Pérez, J. V. (2010). Influence of power ultrasound application on mass transport and microestructure of orange peel during hot air drying. Physics Procedia, 3, 153–159.

    Article  Google Scholar 

  • Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & García-Pérez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21, 1235–1243.

    Article  CAS  Google Scholar 

  • Plesovsky-Vig, N. (1999). In M. E. Shils, J. A. Olson, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and disease (9th ed., p. 423). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Puig, A., Perez-Munuera, I., Cárcel, J. A., Hernando, I., & García-Pérez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90, 624–632.

    Article  Google Scholar 

  • Rizzolo, A., & Polesello, S. (1992). Review Chromatographic determination of vitamins in foods, 624.

  • Rodrigues, S., & Fernandes, F. A. N. (2007). Use of ultrasound as pretreatment for dehydration of melons. Drying Technology, 25(10), 1791–1796. doi:10.1080/07373930701595409.

    Article  CAS  Google Scholar 

  • Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29. doi:10.1016/j.jfoodeng.2014.01.001.

    Article  Google Scholar 

  • Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30, 989–997.

    Article  Google Scholar 

  • Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108, 103–110.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Brazilian funding agency CNPq and the Spanish Ministerio de Economía y Competitividad and FEDER (Ref. DPI2013-37466-C03-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sueli Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, F.A.N., Rodrigues, S., Cárcel, J.A. et al. Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food Bioprocess Technol 8, 1503–1511 (2015). https://doi.org/10.1007/s11947-015-1519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1519-7

Keywords

Navigation