Skip to main content
Log in

Recovery of Tilapia (Oreochromis niloticus) Protein Isolate by High-Intensity Ultrasound-Aided Alkaline Isoelectric Solubilization/Precipitation Process

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High-intensity ultrasound (HIU), which is regarded as “green” technology, was combined with an alkaline pH-shift process to extract tilapia (Oreochromis niloticus) protein isolate (TPI) at various pH conditions. The results showed that HIU significantly decreased the consistency of alkaline muscle homogenate, especially at less extreme pH (pH 10.5), increased the protein solubility, and reduced the sediment ratio. Alkaline volume needed for pH adjustment to the same pH level was slightly increased by HIU, indicating that HIU accelerated the charging of myofibril protein particles and strengthened the electrostatic repulsion forces. Aided by two HIUs, the protein recovery at pH 10.5 was increased from 47.0 to 62.6 %, which was equivalent to that (62.4 %) at pH 11.5 without HIU, suggesting that ~40 % alkaline and corresponding acid in the process could be saved. SDS-PAGE images reveal that HIU induced partial degradation of titin and disassociation of nebulin with thin filament in sarcomere, which possibly facilitated the dispersion and solubilization of myofibril proteins. Those results of ATPase activity loss and surface hydrophobicity increase indicated that HIU also affected the conformation of the dissolved myofibril protein in muscle homogenate. TPI gel strength was elevated when the alkaline pH-shift process was aided by HIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarthi, T., Shaama, M. S., & Madras, G. (2007). Degradation of water soluble polymers under combined ultrasonic and ultraviolet radiation. Industrial & Engineering Chemistry Research, 46(19), 6204–6210.

    Article  CAS  Google Scholar 

  • AOAC. (1995). Official methods of analysis (16th ed.). Washington, DC: The Association of Official Analytical Chemists.

    Google Scholar 

  • Bhaskaracharya, R. K., Kentish, S., & Ashokkumar, M. (2009). Selected applications of ultrasonics in food processing. Food Engineering Reviews, 1(1), 31–49.

    Article  CAS  Google Scholar 

  • Chen, Y.-C., & Jaczynski, J. (2007). Protein recovery from rainbow trout (Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives. Journal of Agricultural and Food Chemistry, 55(22), 9079–9088.

    Article  CAS  Google Scholar 

  • Chen, R. H., Chang, J. R., & Shyur, J. S. (1997). Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Research, 299(4), 287–294.

    Article  CAS  Google Scholar 

  • Cortes-Ruiz, J. A., Pacheco-Aguilar, R., Garciasanchez, G., & Lugo-Sanchez, M. E. (2001). Functional characterization of a potein concentrate from bristly sardine made under acidic conditions. Journal of Aquatic Food Product Technology, 10(4), 5–23.

    Article  Google Scholar 

  • Davenport, M. P., & Kristinsson, H. G. (2011). Channel catfish (Ictalurus punctatus) muscle protein isolate performance processed under different acid and alkali pH values. Journal of Food Science, 76(3), E240–E247.

    Article  CAS  Google Scholar 

  • Fitzsimmons, K. (2004). Tilapia aquaculture in the 21st century. Tuscon: College of Agriculture and Life Sciences, The University of Arizona. Available from: http://ag.arizona.edu/azaqua/ista/keynote.ppt. Accessed 25 Sept 2014.

    Google Scholar 

  • Foh, M. B. K., Wenshui, X., Amadou, I., & Jiang, Q. (2011). Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food and Bioprocess Technology, 5(6), 2192–2200.

    Article  Google Scholar 

  • Fratzl, P. (2008). In P. Fratzl (Ed.), Collagen: structure and mechanics (1st ed., pp. 1–12). New York: Springer New York.

    Chapter  Google Scholar 

  • Hagenson, L. C., & Doraiswamy, L. K. (1998). Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chemical Engineering Science, 53(1), 131–148.

    Article  CAS  Google Scholar 

  • Hu, H., Fan, X., Zhou, Z., Xu, X., Fan, G., Wang, L., Huang, X., Pan, S., & Zhu, L. (2013a). Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 20(1), 187–195.

    Article  CAS  Google Scholar 

  • Hu, H., Li-Chan, E. C. Y., Wan, L., Tian, M., & Pan, S. (2013b). The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocolloids, 32(2), 303–311.

    Article  CAS  Google Scholar 

  • Hu, H., Wu, J., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X., Fan, G., Wang, L., Huang, X., & Pan, S. (2013c). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647–655.

    Article  CAS  Google Scholar 

  • Huang, C.-H., Lai, H.-T., & Weng, Y.-M. (1998). Suitability of hybrid tilapia (Oreochromis niloticus ×Oreochromis aureus) muscle for gel formation. International Journal of Food Science and Technology, 33, 339–344.

    Article  CAS  Google Scholar 

  • Hultin, H. O., & Kelleher, S. D. (1999). Process for isolating a protein composition from a muscle source and protein composition. U.S. Patent 6,005,073.

  • Hultin, H. O., & Kelleher, S. D. (2000). High efficiency alkaline protein extraction. U.S. Patent and Trademark Office Patent 6,136,959.

  • Ingadottir, B., & Kristinsson, H. G. (2010). Gelation of protein isolates extracted from tilapia light muscle by pH shift processing. Food Chemistry, 118(3), 789–798.

    Article  CAS  Google Scholar 

  • Ito, Y., Tatsumi, R., Wakamatsu, J.-I., Nishimura, T., & Hattori, A. (2003). The solubilization of myofibrillar proteins of vertebrate skeletal muscle in water. Animal Science Journal, 74(5), 417–425.

    Article  CAS  Google Scholar 

  • Karki, B., Lamsal, B. P., Grewell, D., Pometto, A. L., Leeuwen, J., Khanal, S. K., & Jung, S. (2009). Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. Journal of the American Oil Chemists’ Society, 86(10), 1021–1028.

    Article  CAS  Google Scholar 

  • Kato, S., & Konno, K. (1993). Isolation of carp myosin rod and its structural stability. Nippon Suisan Gakkaishi, 59, 539–544.

    Article  CAS  Google Scholar 

  • Keller, T. C. (1995). Structure and function of titin and nebulin. Current Opinion in Cell Biology, 7(1), 32–38.

    Article  CAS  Google Scholar 

  • Kim, H. K., Kim, Y. H., Kim, Y. J., Park, H. J., & Lee, N. H. (2012). Effects of ultrasonic treatment on collagen extraction from skins of the sea bass Lateolabrax japonicus. Fisheries Science, 78(2), 485–490.

    Article  Google Scholar 

  • Kim, H. K., Kim, Y. H., Park, H. J., & Lee, N. H. (2013). Application of ultrasonic treatment to extraction of collagen from the skins of sea bass Lateolabrax japonicus. Fisheries Science, 79(5), 849–856.

    Article  CAS  Google Scholar 

  • Kongpun, O. (1999). The gel forming ability of washed and unwashed fish meat (lizardfish and Nile tilapia). Natural Science, 33, 258–269.

    Google Scholar 

  • Kristinsson, H. G., & Hultin, H. O. (2003a). Role of pH and ionic strength on water relationships in washed minced chicken-breast muscle gels. Journal of Food Science, 68(3), 917–922.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., & Hultin, H. O. (2003b). Effect of low and high pH treatment on the functional properties of cod muscle proteins. Journal of Agricultural and Food Chemistry, 51(17), 5103–5110.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., & Hultin, H. O. (2003c). Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry, 51(24), 7187–7196.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., & Ingadottir, B. (2006). Recovery and properties of muscle proteins extracted from tilapia (Oreochromis niloticus) light muscle by pH shift processing. Journal of Food Science, 71(3), E132–E141.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., & Liang, Y. (2006). Effect of pH-shift processing and surimi processing on Atlantic croaker (Micropogonias undulates) muscle proteins. Journal of Food Science, 71(5), C304–C312.

    Article  CAS  Google Scholar 

  • Kristinsson, H. G., Theodore, A. E., Demir, N., & Ingadottir, B. (2006). A comparative study between acid- and alkali-aided processing and surimi processing for the recovery of proteins from channel catfish muscle. Journal of Food Science, 70(4), C298–C306.

  • Kristinsson, H. G., Lanier, T. C., Halldorsdottir, S. M., Geirsdottir, M., & Park, J. W. (2013). Fish protein isolate by pH shift. In J. W. Park (Ed.), Surimi and surimi seafood (3rd ed., pp. 169–192). Boca Raton: CRC Press, Taylor & Francis Group.

    Chapter  Google Scholar 

  • Lorimer, J. P., Mason, T. J., Cuthbert, T. C., & Brookfield, E. A. (1995). Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry, 2(1), S55–S57.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Nolsøe, H., & Undeland, I. (2009). The acid and alkaline solubilization process for the isolation of muscle proteins: state of the art. Food and Bioprocess Technology, 2(1), 1–27.

    Article  Google Scholar 

  • Pappas, C. T., Bliss, K. T., Zieseniss, A., & Gregorio, C. C. (2011). The nebulin family: an actin support group. Trends in Cell Biology, 21(1), 29–37.

  • Park, J. W. (2013). Code of practice for frozen surimi. In J. W. Park (Ed.), Surimi and surimi seafood (3rd ed., pp. 629–636). London: CRC Press.

  • Pérez-Mateos, M., Amato, P. M., & Lanier, T. C. (2006). Gelling properties of Atlantic croaker surimi processed by acid or alkaline solubilization. Journal of Food Science, 69(4), FCT328–FCT333.

    Article  Google Scholar 

  • Samejima, K., Yamauchi, H., Asghar, A., & Yasui, T. (1984). Role of myosin heavy chains from rabbit skeletal muscle in the heat-induced gelation mechanism. Agriculture and Biology Chemistry, 48(9), 2225–2232.

    Article  CAS  Google Scholar 

  • Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323–331.

    Article  CAS  Google Scholar 

  • Stefansson, G., & Hultin, H. O. (1994). On the solubility of cod muscle proteins in water. Journal of Agricultural and Food Chemistry, 42(12), 2656–2664.

    Article  CAS  Google Scholar 

  • Tang, C.-H., Wang, X.-Y., Yang, X.-Q., & Li, L. (2009). Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. Journal of Food Engineering, 92(4), 432–437.

    Article  CAS  Google Scholar 

  • Taskaya, L., Chen, Y.-C., Beamer, S., Tou, J. C., & Jaczynski, J. (2009). Compositional characteristics of materials recovered from whole gutted silver carp (Hypophthalmichthys molitrix) using isoelectric solubilization/precipitation. Journal of Agricultural and Food Chemistry, 57(10), 4259–4266.

    Article  CAS  Google Scholar 

  • Tskhovrebova, L., & Trinick, J. (2003). Titin: properties and family relationships. Nature Reviews Molecular Cell Biology, 4(9), 679–689.

    Article  CAS  Google Scholar 

  • Tskhovrebova, L., & Trinick, J. (2010). Roles of titin in the structure and elasticity of the sarcomere. Journal of Biomedicine & Biotechnology, 2010, 1–7.

    Article  Google Scholar 

  • Undeland, I., Kelleher, S. D., & Hultin, H. O. (2002). Recovery of functional proteins from herring (Clupea harengus) light muscle by an acid or alkaline solubilization process. Journal of Agricultural and Food Chemistry, 50(25), 7371–7379.

    Article  CAS  Google Scholar 

  • Undeland, I., Kelleher, S. D., Hultin, H. O., McClements, J., & Thongraung, C. (2003). Consistency and solubility changes in herring (Clupea harengus) light muscle homogenates as a function of pH. Journal of Agricultural and Food Chemistry, 51(14), 3992–3998.

    Article  CAS  Google Scholar 

  • Vodenicarová, M., Drímalová, G., Hromádková, Z., Malovíková, A., & Ebringerová, A. (2006). Xyloglucan degradation using different radiation sources: a comparative study. Ultrasonics Sonochemistry, 13(2), 157–164.

    Article  Google Scholar 

  • Wu, T., Zivanovic, S., Hayes, D. G., & Weiss, J. (2008). Efficient reduction of chitosan molecular weight by high-intensity ultrasound: underlying mechanism and effect of process parameters. Journal of Agricultural and Food Chemistry, 56(13), 5112–5119.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to Tyre C. Lanier, a professor in the seafood lab of North Carolina State University, USA, for his advice regarding these studies. We also wish to thank the Chinese Government and the Research Programs of Ocean and Fisheries of Guangdong Province (A201201C03; A201201I04-2) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

(DOC 35 kb)

Fig. 2

(DOC 54 kb)

ESM 1

(DOC 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Wang, Y., Zhu, Z. et al. Recovery of Tilapia (Oreochromis niloticus) Protein Isolate by High-Intensity Ultrasound-Aided Alkaline Isoelectric Solubilization/Precipitation Process. Food Bioprocess Technol 8, 758–769 (2015). https://doi.org/10.1007/s11947-014-1431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1431-6

Keywords

Navigation