Skip to main content
Log in

A Comparison of Pulsed Electric Field Resistance for Three Microorganisms with Different Biological Factors in Grape Juice via Numerical Simulation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pulsed electric field (PEF) is a promising nonthermal food preservation technology that is based on the use of electric field to eradicate spoilage and pathogenic microorganisms in food products. The effect of various biological factors on the transmembrane potential of different microorganisms (Staphyloccocus aureus, Escherichia coli DH5α, and Saccharomyces cerevisiae) was investigated by means of both numerical simulation and experimental method. The PEF resistance of different microorganisms in grape juice was compared by applying field strength of 12–24 kV/cm, treatment time of 30–180 μs, and an initial temperature of 30 ºC. The results showed that S. cerevisiae exhibited the least resistance to PEF treatment, E. coli DH5α the second, and S. aureus the third. The simulation results indicated that larger cells like S. cerevisiae presented the higher values of transmembrane potential and induced field strength around the cells compared to E. coli DH5α and S. aureus, which led to a less resistance to PEF treatment. The effect of cell orientation on the induced transmembrane potential was very slight (1.67 % for E. coli DH5α and 3.43 % for S. cerevisiae). The thicker cell membrane caused concentrated electric field in the cell membrane, which enhanced the sensitivity of microorganism to PEF treatment. However, both transmembrane potential and electric field strength decreased with the thickness of cell wall increasing. According to both experimental and simulation results, it was evident that there was significant difference in the inactivation rate between different microorganisms, which could be largely attributed to the biological factors of different microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abram, F., Smelt, J. P. P. M., Bos, R., & Wouters, P. C. (2003). Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. Journal of Applied Microbiology, 94, 571–579.

    Article  CAS  Google Scholar 

  • Agarwal, A., Zudans, I., Weber, E. A., Olofsson, J., Orwar, O., & Weber, S. G. (2007). Effect of cell size and shape on single-cell electroporation. Analytical Chemistry, 79, 3589–3596.

    Article  CAS  Google Scholar 

  • Aronsson, K., & Rönner, U. (2001). Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2, 105–112.

    Article  CAS  Google Scholar 

  • Aronsson, K., Lindgren, M., Johansson, B. R., & Rönner, U. (2001). Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2, 41–54.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., & Sepúlveda, D. (2005). Present status and the future of PEF technology. In G. V. Barbosa-Cánovas, M. S. Tapia, & M. Pilar Cano (Eds.), Novel food processing technologies (pp. 22–23). New York: CRC Press.

    Google Scholar 

  • Bayer, M. E. (1968). Areas of adhesion between wall and membrane of Escherichia coli. Journal of General Microbiology, 53, 395–404.

    Article  CAS  Google Scholar 

  • Buckow, R., Baumann, P., Schroeder, S., & Knoerzer, K. (2011). Effect of dimensions and geometry of co-field and co-linear pulsed electric field treatment chambers on electric field strength and energy utilisation. Journal of Food Engineering, 105, 545–556.

    Article  Google Scholar 

  • Comsol. (2011). COMSOL User’s Guide. Version 4.2a. Burlington: COMSOL Inc.

    Google Scholar 

  • Cui, L., Tominaga, E., Neoh, H., & Hiramatsu, K. (2006). Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphyococcus aureus. Antimicrobial Agents and Chemotherapy, 50, 1079–1082.

    Article  CAS  Google Scholar 

  • Elez-Martínez, P., Escolà-Hernández, J., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2004). Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields. Journal of Food Protection, 67, 2596–2602.

    Google Scholar 

  • Elez-Martínez, P., Escolà-Hernández, J., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2005). Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 22, 311–319.

    Article  Google Scholar 

  • Elez-Martínez, P., Soliva-Fortuny, R. C., & Martín-Belloso, O. (2006). Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. European Food Research and Technology, 222, 321–329.

    Article  Google Scholar 

  • El-Hag, A. H., Jayaram, S. H., Gonzalez, O. R., & Griffiths, M. W. (2011). The influence of size and shape of microorganism on pulsed electric field inactivation. IEEE Transactions on Nanobioscience, 10, 133–138.

    Article  Google Scholar 

  • Fox, M. B., Esveld, D. C., Mastwijk, H., & Boom, R. M. (2008). Inactivation of L. plantarum in a PEF microreactor: the effect of pulse width and temperature on the inactivation. Innovative Food Science and Emerging Technologies, 9, 101–108.

    Article  CAS  Google Scholar 

  • García, D., Gómez, N., Raso, J., & Pagán, R. (2005). Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innovative Food Science and Emerging Technologies, 6, 388–395.

    Article  Google Scholar 

  • Gerlach, D., Alleborn, N., Baars, A., Delgado, A., Moritz, J., & Knorr, D. (2008). Numerical simulations of pulsed electric fields for food preservation: a review. Innovative Food Science and Emerging Technology, 9, 408–417.

    Article  Google Scholar 

  • Gimsa, J., & Wachner, D. (2001). On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Biophysics Letter, 30, 463–466.

    CAS  Google Scholar 

  • Heinz, V., Alvarez, I., Angersbach, A., & Knorr, D. (2002). Preservation of food by high intensity pulsed electric fields—Basic concepts for process design. Trends in Food Science and Technology, 12, 103–111.

    Article  Google Scholar 

  • Hojo, S., Shimizu, K., Yositake, H., Muraji, M., Tsujimoto, H., & Tatebe, W. (2003). The relationship between electropermeabilization and cell cycle and cell size of Saccharomyces cerevisiae. IEEE Transactions on Nanobioscience, 2, 35–39.

    Article  Google Scholar 

  • Hülsheger, H., Potel, J., & Niemann, E. G. (1981). Killing of bacteria with electric pulses of high field strength. Radiation and Environmental Biophysics, 20, 53–65.

    Article  Google Scholar 

  • Johnston, G. C., Ehrhardt, C. W., Lorincz, A., & Carter, B. L. (1979). Regulation of cell size in the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 137, 1–5.

    CAS  Google Scholar 

  • Knoerzer, K., Baumann, P., & Buckow, R. (2012). An iterative modelling approach for improving the performance of a pulsed electric field (PEF) treatment chamber. Computers and Chemical Engineering, 37, 48–63.

    Article  CAS  Google Scholar 

  • Knorr, D., Engel, K. H., Vogel, R., Kochte-Clemens, B., & Eisenbrand, G. (2008). Statement on the treatment of food using a pulsed electric field. Molecular Nutrition and Food Research, 52, 1539–1542.

    Article  CAS  Google Scholar 

  • Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and measurements. In K. Chang (Ed.), Encyclopedia of RF and microwave engineering (p. 308). New York: John Wiley and Sons.

    Google Scholar 

  • Kotnik, T., & Miklavčič, D. (2006). Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysical Journal, 90, 480–491.

    Article  CAS  Google Scholar 

  • Kotnik, T., Mir, L. M., Flisar, K., Puc, M., & Miklavčič, D. (2001). Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part I. Increased efficiency of permeabilization. Bioelectrochemistry, 54, 83–90.

    Article  CAS  Google Scholar 

  • Kotnik, T., Pucihar, G., Reberšek, M., Miklavčič, D., & Mir, L. M. (2003). Role of pulse shape in cell membrane electropermeabilization. Biochimica et Biophysica Acta - Biomembranes, 1614, 193–200.

    Article  CAS  Google Scholar 

  • Liu, X., Yousef, A., & Chism, G. (1997). Inactivation of Escherichia coli O157:H7 by the combination of organic acids and pulsed electric fields. Journal of food safety, 16, 287–299.

    Article  CAS  Google Scholar 

  • López, N., Puértolas, E., Condón, S., Raso, J., & Alvarez, I. (2009). Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90, 60–66.

    Article  Google Scholar 

  • Maswiwat, K., Wachner, D., & Gimsa, J. (2008). Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells. Bioelectrochemistry, 74, 130–141.

    Article  CAS  Google Scholar 

  • McNamee, C., Noci, F., Cronin, D. A., Lyng, J. G., Morgan, D. J., & Scannell, A. G. M. (2010). PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli K12 in orange juice. International Journal of Food Microbiology, 138, 13–18.

    Article  CAS  Google Scholar 

  • Meneses, N., Jaeger, H., & Knorr, D. (2011a). Basics for modeling of pulsed electric field processing of foods. In K. Knoerzer, P. Juliano, P. Roupas, & C. Versteeg (Eds.), Innovative food processing technologies: Advances in multiphysics simulation (pp. 174–175). New York: John Wiley & Sons.

    Google Scholar 

  • Meneses, N., Jaeger, H., & Knorr, D. (2011b). Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber. Journal of Food Science, 76, 536–543.

    Article  Google Scholar 

  • Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martín-Belloso, O. (2007). Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. International Journal of Food Microbiology, 117, 192–200.

    Article  CAS  Google Scholar 

  • Noci, F., Walkling-Ribeiro, M., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). Effect of thermosonication, pulsed electric field and their combination on inactivation of Listeria innocua in milk. International Dairy Journal, 19, 30–35.

    Article  Google Scholar 

  • Qin, B., Chang, F., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed electric fields. LWT--Food Science and Technology, 28, 564–568.

    Article  CAS  Google Scholar 

  • Saldaña, G., Minor- Pérez, H., Raso, J., & Álvarez, I. (2011a). Combined effect of temperature, pH, and presence of nisin on inactivation of Staphylococcus aureus and Listeria monocytogenes by pulsed electric fields. Foodborne Pathogens and Disease, 8, 797–802.

    Article  Google Scholar 

  • Saldaña, G., Puértolas, E., Monfort, S., Raso, J., & Álvarez, I. (2011b). Defining treatment conditions for pulsed electric field pasteurization of apple juice. International Journal of Food Microbiology, 151, 29–35.

    Article  Google Scholar 

  • Saldaña, G., Monfort, S., Condón, S., Raso, J., & Álvarez, I. (2012). Effect of temperature, pH and presence of nisin on inactivation of Salmonella Tyhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Research International, 45, 1080–1086.

    Article  Google Scholar 

  • Schoenbach, K., Peterkin, F., Alden, R., & Beebe, S. (1997). The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Transactions on Plasma Science, 25, 284–292.

    Article  Google Scholar 

  • Smith, K. C., Gowrishankar, T. R., Esser, A. T., Stewart, D. A., & Weaver, J. C. (2006). The spatially distributed dynamic transmembrane voltage of cells and organells due to 10-ns pulses: meshed transport networks. IEEE transactions on Plasma Science, 34, 1394–1404.

    Article  Google Scholar 

  • Suehiro, J., Hamada, R., Nouromi, D., Shutou, M., & Hara, M. (2003). Selective detection of viable bacteria using dielectrophoretic impedance measurement method. Journal of Electrostatics, 57, 157–168.

    Article  Google Scholar 

  • Toepfl, S., Heinz, V., & Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing, 46, 537–546.

    Article  CAS  Google Scholar 

  • Valič, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., et al. (2003). Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal, 32, 519–528.

    Google Scholar 

  • van den Bosch, H. F. M. (2007). Chamber design and process conditions for pulsed electric field treatment of food. In H. L. M. Lelieveld, S. Notermans, & S. W. H. De Haan (Eds.), Food preservation by pulsed electric fields (pp. 70–93). Cambridge: Woodhead.

    Google Scholar 

  • Vega-Mercado, H., Martín-Belloso, O., Chang, F. J., Barbosa-Cánovas, G., & Swanson, B. (1996). Inactivation of Escherichia coli and Bacillus subtilis suspended in pea soup using pulsed electric fields. Journal of Food Processing and Preservation, 20, 501–510.

    Article  Google Scholar 

  • Walking-Ribeiro, M., Rodríguez-González, O., Jayaram, S. H., & Griffiths, M. W. (2011). Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Research International, 44, 2524–2533.

    Article  Google Scholar 

  • Wan, J., Coventry, J., Swiergon, P., Sanguansri, P., & Versteeg, C. (2009). Advances in innovative processing technologies for microbial inactivation and enhancement of food safety – pulsed electric field and low-temperature plasma. Trends in Food Science and Technology, 20, 414–424.

    Article  CAS  Google Scholar 

  • Wanichapichart, P., Bunthawin, S., Kaewpaiboon, A., & Kanchanapoom, K. (2002). Determination of cell dielectric properties using dielectrophoretic technique. ScienceAsia, 28, 113–119.

    Article  Google Scholar 

  • Wu, Y., Mittal, G. S., & Griffiths, M. W. (2005). Effect of pulsed electric field on the inactivation of microorganisms in grape juices with and without antimicrobials. Biosystems Enineering, 90, 1–7.

    Article  Google Scholar 

  • Zhang, Q., Monsalve-Gonzalez, A., Barbosa-Cánovas, G., & Swanson, B. (1994). Inactivation of E. coli and S. cerevisiae by pulsed electric fields under controlled temperature conditions. Transactions of the ASAE, 37, 581–587.

    Article  Google Scholar 

  • Zhang, Q., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 25, 261–281.

    Article  Google Scholar 

  • Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology Biochemistry and Pharmacology, 105, 176–257.

    CAS  Google Scholar 

  • Zimmermann, U., & Benz, R. (1980). Dependence of the electrical breakdown voltage on the charging time in Valonia utricularis. The Journal of Membrane Biology, 53, 33–43.

    Article  Google Scholar 

  • Zimmermann, U., Schulz, J., & Pilwat, G. (1973). Transcellular ion flow in E. coli and electrical sizing of bacteria. Biophysical Journal, 13, 1005–1013.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (31271613/C130102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Jiang, T., Wang, W. et al. A Comparison of Pulsed Electric Field Resistance for Three Microorganisms with Different Biological Factors in Grape Juice via Numerical Simulation. Food Bioprocess Technol 7, 1981–1995 (2014). https://doi.org/10.1007/s11947-014-1272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1272-3

Keywords

Navigation