Skip to main content
Log in

Dependence of the electrical breakdown voltage on the charging time inValonia utricularis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Charge-pulse experiments were performed on giant algal cells ofValonia utricularis. For a charging time of 420 μsec the breakdown voltage is about 750 mV (18°C), a value that is in close agreement with earlier results obtained with current pulses (Coster & Zimmermann, 1975;J. Membrane Biol. 22:73). If the membrane is charged to the breakdown voltage in a shorter time, the breakdown voltage is found to be a function of the duration of the charge pulses. Whereas towards smaller pulse lengths down to 10 μsec only a small, but significant, increase in the breakdown voltage is observed (1.1 V at 10 μsec pulse length and 18°C), a strong increase in the breakdown voltage is found for even shorter charging times. For a pulse length of 800 nsec the breakdown voltage has a value of about 2.4 V (18°C) and a plateau seems to be reached for a pulse duration of 500 nsec. The influence of temperature on the breakdown voltage as observed for short charging times is very similar to that reported earlier for current pulses of 500 μsec duration. For charge pulses of 1 to 2 μsec duration the breakdown voltage decreases from 3.6 V at 3°C to 1.6 V at 25°C by more than a factor of two.

Voltage relaxation studies in the low-field range suggest that the time constants of the two membranes arranged in series, tonoplast and plasmalemma, are similar. From this, it is suggested that both membranes show electrical breakdown, whereby the breakdown voltage of a single membrane is probably half the value of the total breakdown voltage. Its dependence on pulse length is therefore considered to be an intrinsic property of one single membrane. The strong dependence of the breakdown voltage on the charging time of the membrane further supports the interpretation of the breakdown phenomenon on the basis of the electro-mechanical model proposed earlier. In this model it is assumed that the electrical and mechanical compressive forces are counter balanced by elastic restoring forces within the membrane. However, towards very short pulses (less than 800 nsec), where a plateau seems to be reached, other processes may be generated by the application of the electric field. We discuss whether one of these processes is the ion movement through the membranes induced by a high electric field (Born energy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benz, R., Beckers, F., Zimmermann, U. 1979. Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study.J. Membrane Biol. 48:181

    Google Scholar 

  2. Benz, R., Fröhlich, O., Läuger, P. 1976. Influence of membrane structure on the kinetics of carrier mediated ion transport through lipid bilayers.Biochim. Biophys. Acta 464:465

    Google Scholar 

  3. Benz, R., Fröhlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323

    PubMed  Google Scholar 

  4. Benz, R., Gisin, B.F. 1978. Influence of membrane structure on ion transport through lipid bilayer membranes.J. Membrane Biol. 40:293

    Google Scholar 

  5. Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171

    Google Scholar 

  6. Benz, R., Läuger, P., Janko, K. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge pulse relaxation studies.Biochim. Biophys. Acta 455:701

    PubMed  Google Scholar 

  7. Cole, K.S. 1968. Membranes, Ions and Impulses. Ch. I, p. 6. University of California Press

  8. Coster, H.G.L., Smith, J.R. 1974. The effect of pH on the low frequency capacitance of the membranes ofChara corallina.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. p. 154. Springer-Verlag, Heidelberg

    Google Scholar 

  9. Coster, H.G.L., Zimmermann, U. 1975. Direct demonstration of dielectric breakdown in the membranes ofValonia utricularis.Z. Naturforsch. 30c:77

    Google Scholar 

  10. Coster, H.G.L., Zimmermann, U. 1975. The mechanism of electrical breakdown in the membranes ofValonia utricularis.J. Membrane Biol. 22:73

    Google Scholar 

  11. Coster, H.G.L., Zimmermann, U. 1975. Dielectric breakdown in the membranes ofValonia utricularis. The role of energy dissipation.Biochim. Biophys. Acta 382:410

    PubMed  Google Scholar 

  12. Gauger, B., Bentrup, F.W. 1979. A study of dielectric membrane breakdown in theFucus egg.J. Membrane Biol. 48:249

    Google Scholar 

  13. Kiyosawa, K., Tazawa, M. 1977. Hydraulic conductivity of tonoplast-freeChara cells.J. Membrane Biol. 37:157

    Google Scholar 

  14. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane. Solution to four relevant electro-static problems.Nature (London) 221:844

    Google Scholar 

  15. Pilwat, G., Hampp, R., Zimmermann, U. 1979. Electrical field effects induced in membranes of developing chloroplasts.Planta (in press)

  16. Pilwat, G., Zimmermann, U., Riemann, F. 1975. Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzylalcohol as a probe molecule.Biochim. Biophys. Acta 406:424

    PubMed  Google Scholar 

  17. Riemann, F., Zimmermann, U., Pilwat, G. 1975. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.Biochim. Biophys. Acta 394:449

    PubMed  Google Scholar 

  18. Steudle, E., Zimmermann, U. 1974. Turgor pressure regulation in algal cells: Pressure-dependence of electrical parameters of the membrane in large pressure ranges.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. p. 72. Springer-Verlag, Heidelberg

    Google Scholar 

  19. Zimmermann, U. 1977. Cell turgor pressure regulation and turgor pressure-mediated transport processes.In: Integration of Activity in the Higher Plant. D. Jennings, editor. p. 117. University Press, Cambridge

    Google Scholar 

  20. Zimmermann, U. 1978. Physics of turgor- and osmoregulation.Annu. Rev. Plant Physiol. 29:121

    Google Scholar 

  21. Zimmermann, U., Beckers, F., Coster, H.G.L. 1977. The effect of pressure on the electrical breakdown in the membranes ofValonia utricularis.Biochim. Biophys. Acta 464:399

    PubMed  Google Scholar 

  22. Zimmermann, U., Beckers, F., Steudle, E. 1977. Turgor sensing in plant cells by the electromechanical properties of the membrane.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty, and J. Dainty, editors. No. 258, p. 155. C.N.R.S., Paris

    Google Scholar 

  23. Zimmermann, U., Groves, M., Schnabl, H., Pilwat, G. 1979. Development of a new Coulter Counter system: Measurement of the volume, internal conductivity, and dielectric breakdown voltage of a single guard cell protoplast ofVicia faba.J. Membrane Biol. 52:37

    Google Scholar 

  24. Zimmermann, U., Pilwat, G., Beckers, F., Riemann, F. 1976. Effects of external electrical fields on cell membranes.Bioelectrochem. Bioenerg. 3:58

    Google Scholar 

  25. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. p. 146. Springer-Verlag, Heidelberg

    Google Scholar 

  26. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown in cell membranes.Biophys. J. 14:881

    Google Scholar 

  27. Zimmermann, U., Pilwat, G., Riemann, F. 1975. Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane.Biochim. Biophys. Acta 375:209

    PubMed  Google Scholar 

  28. Zimmermann, U., Pilwat, G., Vienken, J. 1979. Erythrocytes and lymphocytes as drug carrier systems: Techniques for entrapment of drugs in living cells.In: Recent Results in Cancer Research, Springer-Verlag, Heidelberg (in press)

    Google Scholar 

  29. Zimmermann, U., Riemann, F., Pilwat, G. 1976. Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown.Biochim. Biophys. Acta 436:460

    PubMed  Google Scholar 

  30. Zimmermann, U., Schulz, J., Pilwat, G. 1973. Transcellular ion flow inE. coli B and electrical sizing of bacterias.Biophys. J. 13:1005

    PubMed  Google Scholar 

  31. Zimmermann, U., Steudle, E., Lelkes, P.I. 1976. Turgor pressure regulation inValonia utricularis.Plant Physiol. 58:608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, U., Benz, R. Dependence of the electrical breakdown voltage on the charging time inValonia utricularis . J. Membrain Biol. 53, 33–43 (1980). https://doi.org/10.1007/BF01871170

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871170

Keywords

Navigation