Skip to main content
Log in

Cornflake Production Process: State Diagram and Water Mobility Characteristics

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this work was to fully understand the physicochemical events involved in the development of the cornflake structure, taking into consideration the water sorption characteristics and state changes in the solid phase as a function of temperature and water content. Complementarily, time-resolved proton nuclear magnetic resonance (1H-TD-NMR) was used to evaluate the dynamic aspects at different stages of the classical cornflake production process. Processing had the effect of reducing the water sorption capacity of the samples and of increasing the sorption energy. While the minimal water content necessary to detect starch gelatinization was lower than the water content at which frozen water was detected by DSC (W = 24%), water excess for an adequate cooking needs to be higher than this value. By describing the process using supplemented state diagrams, it was possible to delimitate regions in which the main components (starch and proteins) underwent specific changes such as gelatinization or crosslinking. The data of comparative mobility of water populations helped to understand the occurrence of those changes. The physical state of the samples could be established for each process stage, the matrix was soft and malleable when important internal and external forces were applied which allowed the change of shape, microstructure, and appearance of the product. Physical hardening occurred after toasting to create the typical expected crispy texture. The data of comparative mobility of proton populations helped to understand the occurrence of those changes, the conditions prevailing in each stage, and the physical state of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AACC (1996). Approved methods of the American Association of Cereal Chemists. Method 44–16. AACC International, St. Paul, MN, USA.

  • Assifaoui, A., Champion, D., Chiotelli, E., & Verel, A. (2006). Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydrate Polymers, 64, 197–204.

    Article  CAS  Google Scholar 

  • Buera, M. P., Roos, H., Levine, H., Slade, L., Corti, H. R., Reid, D. S., Auffret, T., & Angell, C. A. (2011a). State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC technical report). Pure and Applied Chemistry, 83(8), 1567–1617.

    Article  CAS  Google Scholar 

  • Buera P, Barbosa-Canovas G & Gutiérrez G (2011b) ISOPOW 11 Round table discussion and closing of ISOPOW practicum III, 9–10 September 2010. World of Food Science. Available at: http://www.worldfoodscience.org/cms/?pid=1005756. Accessed 5 March 2013.

  • Carr, H. Y., & Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review, 94(3), 630–638.

    Article  CAS  Google Scholar 

  • Chen, C.-M., & Yeh, A.-I. (2001). Effect of amylose content on expansion of extruded rice pellet. Cereal Chemistry Journal, 78(3), 261–266.

    Article  CAS  Google Scholar 

  • Chen, P., Long, Z., Ruan, R., & Labuza, T. (1997). Nuclear magnetic resonance studies of water mobility in bread during storage. Food Science and Technology, 30, 178–183.

    CAS  Google Scholar 

  • Chinachoti, P., Vittadini, E., Chatakanonda, P., & Vodovotz, Y. (2008). Characterization of molecular mobility in carbohydrate food systems by NMR. In G. A. Webb (Ed.), Modern Magnetic Resonance (pp. 1703–1712). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Choi, S., & Kerr, W. (2003). 1H NMR studies of molecular mobility in wheat starch. Food Research International, 36, 341–348.

    Article  CAS  Google Scholar 

  • Chung, H.-J., & Lim, S.-T. (2004). Physical aging of glassy normal and waxy rice starches: thermal and mechanical characterization. Carbohydrate Polymers, 57, 15–21.

    Article  CAS  Google Scholar 

  • Colquhoun, I., & Goodfellow, B. (1994). Nuclear magnetic resonance spectroscopy. In W. Reiginald (Ed.), Spectroscopic techniques for food analysis (pp. 87–145). New York, USA: VCH Publishers Inc.

    Google Scholar 

  • Cova, A., Sandoval, A. J., Balsamo, V., & Müller, A. J. (2010). The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers, 81, 660–667.

    Article  CAS  Google Scholar 

  • Culbertson, J. D. (2004). Grain, cereal: ready to eat breakfast cereals. In S. J. Smith & Y. H. Hui (Eds.), Food processing: principles and applications. Oxford, UK: Blackwell.

    Google Scholar 

  • Cuq, B., Abecassis, J., & Guilbert, S. (2003). State diagrams to help describe wheat bread processing. International Journal of Food Science & Technology, 38(7), 759–766.

    Article  CAS  Google Scholar 

  • Curti, E., Bubici, S., Carini, E., Baroni, S., & Vittadini, E. (2011). Water molecular dynamics during bread staling by nuclear magnetic resonance. Food Science and Technology, 44, 854–859.

    CAS  Google Scholar 

  • Farhat, I. A., Mitchell, J. R., Blanshard, J. M. V., & Derbyshire, W. (1996). A pulsed 1H NMR study of the hydration properties of extruded maize-sucrose mixtures. Carbohydrate Polymers, 30, 219–227.

    Article  CAS  Google Scholar 

  • Farroni, A. E., & Buera, M. P. (2012). Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production. Food Chemistry, 135, 1685–1691.

    Article  CAS  Google Scholar 

  • Farroni, A. E., Matiacevich, S. B., Guerrero, S., Alzamora, S., & Buera, M. P. (2008). Multi-level approach for the analysis of water effects in corn flakes. Journal of Agricultural and Food Chemistry, 56(15), 6447–6453.

    Article  CAS  Google Scholar 

  • Fast, R. B. (2000). Manufacturing technology of ready-to-eat cereals. In R. B. Fast & E. F. Caldwell (Eds.), Breakfast cereals and how they are made (pp. 17–54). St. Paul, Minnesota, U.S.A.: American Association of Cereal Chemist.

    Chapter  Google Scholar 

  • Fullerton, G. D., & Cameron, I. L. (1988). Relaxation of biological tissues. In F. W. Wehrli & J. B. Kneeland (Eds.), Biomedical magnetic resonance imaging principles, methodology, and application (pp. 115–155). New York, USA: VCH Publishers Inc.

    Google Scholar 

  • Fundo, J. F., Fernandes, R., Almeida, P. M., Carvalho, A., Feio, G., Silva, C. L., & Quintas, M. A. (2014). Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chemistry, 144(1), 2–8.

    Article  CAS  Google Scholar 

  • Gabbott, P. (2008). A practical introduction to differential scanning calorimetry. In P. Gabbott (Ed.), Principles and applications of thermal analysis (pp. 1–50). Oxford, UK: Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  • Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and the 2nd order transitions of synthetic rubbers. 1. Non-crystalline copolymers. Journal of Applied Chemistry, 2(2), 493–500.

    CAS  Google Scholar 

  • Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of research of the National Bureau of Standards. Section A. Physics and Chemistry, 81, 89–95.

    Article  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption, surface area, and porosity. UK: Academic Press London.

    Google Scholar 

  • Hahn, E. L. (1950). Spin Echoes. Physical Review, 80(4), 580–594.

    Article  Google Scholar 

  • Katkov, I. I., & Levine, F. (2004). Prediction of the glass transition temperature of water solutions: comparison of different models. Cryobiology, 49(1), 62.

    Article  CAS  Google Scholar 

  • Levine, H., & Slade, L. (1989). Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products. In H. Faridi & J. M. Faubion (Eds.), Dough rheology and baked product texture (pp. 157–330). New York, USA: Springer.

    Google Scholar 

  • Levine, H., & Slade, L. (1992). Glass transitions in food. In H. Schwartzberg & H. Hartel (Eds.), Physical chemistry of foods (pp. 83–221). New York, USA: Marcel Dekker.

    Google Scholar 

  • Levine, H., & Slade, L. (1991). Water relationships in foods. Advances in the 1980s and trends for de 1990s. New York, USA: Springer.

    Book  Google Scholar 

  • Lin, X., Ruan, R. R., Chen, P. L., Chung, M., Ye, X., Yang, T., Doona, C., & Wagner, T. (2006). NMR state diagram concept. Journal of Food Science, 71(9), R136–R145.

    Article  CAS  Google Scholar 

  • Liu, H., Yu, L., Chen, L., & Li, L. (2007). Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydrate Polymers, 69, 756–762.

    Article  CAS  Google Scholar 

  • Lomauro, C. J., Bakshi, A. S., & Labuza, T. P. (1985). Evaluation of food moisture sorption isotherm equations part 1: Fruit, vegetable and meat products. Food Science and Technology, 18(2), 111–117.

    Google Scholar 

  • Madeka, H., & Kokini, J. L. (1996). Effect of glass transition and cross-linking on rheological properties of zein: development of a preliminary state diagram. Cereal Chemistry, 73(4), 433–438.

    CAS  Google Scholar 

  • Palou, E., Lopez-Malo, A., & Argaiz, A. (1997). Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. Journal of Food Engineering, 31(1), 85–93.

    Article  Google Scholar 

  • Rahman, M. S. (2006). State diagram of foods: its potential use in food processing and product stability. Trends in Food Science & Technology, 17, 129–141.

    Article  CAS  Google Scholar 

  • Roos, Y. H. (2003). Thermal analysis, state transitions and food quality. Journal of Thermal Analysis and Calorimetry, 71, 193–199.

    Article  Google Scholar 

  • Roos, Y. H., Karel, M., & Kokini, J. L. (1996). Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technology, 50(11), 95–108.

    Google Scholar 

  • Ruan, R. R., & Chen, P. L. (1998). Nuclear magnetic resonance techniques. In Water in foods and biological materials: a nuclear magnetic resonance approach (pp. 17–24). Lancaster, Pennsylvania, USA: Technomic Publishing Co.

    Google Scholar 

  • Sablani, S. S., Bruno, L., Kasapis, S., & Symaladevi, R. M. (2009). Thermal transitions of rice: development of a state diagram. Journal of Food Engineering, 90, 110–118.

    Article  Google Scholar 

  • Samapundo, S., Devlieghere, F., Meulenaer, B. D., Atukwase, A., Lamboni, Y., & Debevere, J. M. (2007). Sorption isotherms and isosteric heats of sorption of whole yellow dent corn. Journal of Food Engineering, 79(1), 168–175.

    Article  Google Scholar 

  • Sandoval, A. J., Nuñez, M., Müller, J. A., Della Valle, G., & Lourdin, D. (2009). Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydrate Polymers, 76, 528–534.

    Article  CAS  Google Scholar 

  • Schmidt, S. J. (2004). Water mobility in foods. Advances in Food and Nutrition Research, 48, 1–101.

    Article  CAS  Google Scholar 

  • Slade, L., & Levine, H. (1995). Glass transitions and water food structure interactions. Advances in Food Nutrition Research, 38, 103–269.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H., & Finley, J. W. (1989). Protein-water interactions: water as a plasticizer of gluten and other protein polymers. In R. D. Phillips & J. W. Finley (Eds.), Protein quality and the effects of processing (pp. 9–124). New York, USA: Marcel Dekker.

    Google Scholar 

  • Tang, R. H., & Hills, B. B. (2001). A proton NMR relaxation study of the gelatinization and acid hydrolysis of native potato starch. Carbohydrate Polymers, 46, 7–18.

    Article  CAS  Google Scholar 

  • Thiewes, H., & Steeneken, P. (1997). The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydrate Polymers, 32, 123–130.

    Article  CAS  Google Scholar 

  • Timmermann, E. O., & Chirife, J. (1991). The physical state of water sorbed at high activities in starch in terms of the GAB sorption equation. Journal of Food Engineering, 13(17), 1–179.

    Google Scholar 

  • Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48(1), 19–31.

    Article  Google Scholar 

  • Toufeili, I., Lambert, I. A., & Kokini, J. L. (2002). Effect of glass transition and cross-linking on rheological properties of gluten: development of a preliminary state diagram. Cereal Chemistry, 79(1), 138–142.

    Article  CAS  Google Scholar 

  • Wang, X., Choi, S. G., & Kerr, W. L. (2004). Water dynamics in white bread and starch gels as affected by water and gluten content. Food Science and Technology, 37, 377–384.

    Google Scholar 

  • Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. Food Science and Technology, 42, 1688–1695.

    CAS  Google Scholar 

Download references

Financial Support

The present work was supported by the following research projects: UBACYT es 2011–2014, Universidad de Buenos Aires, and PICT 2008–0928 financed by Agencia Nacional de Promoción Científica y Tecnológica, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel E. Farroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farroni, A.E., del Pilar Buera, M. Cornflake Production Process: State Diagram and Water Mobility Characteristics. Food Bioprocess Technol 7, 2902–2911 (2014). https://doi.org/10.1007/s11947-014-1270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1270-5

Keywords

Navigation