Skip to main content
Log in

Pasteurization of Apple Juice Contaminated with Escherichia coli by a Combined UV–Mild Temperature Treatment

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The bactericidal efficacy of ultraviolet (UV) treatments to fruit juices is limited because of their low UV transmittance; therefore, it is necessary to design combined processes to improve their lethality. This investigation was carried out to determinate the lethal effect of UV-C treatments at mild temperatures (UV-H treatments) on the UV-resistant Escherichia coli strain Spanish Type Culture Collection (STCC) 4201 suspended in apple juice. A synergistic effect was observed and the optimum temperature for the combined process was established. Subsequently, the effect of the optimized treatment on the lethality of an E. coli cocktail (STCC 4201, STCC 471, American Type Culture Collection (ATCC) 27325, ATCC 25922, and O157:H7 Chapman strain) and on freshly squeezed apple juice quality was evaluated. A UV treatment of 20.33 J/mL reached 0.61 ± 0.01, 0.83 ± 0.07, 1.38 ± 0.04, 1.97 ± 0.06, 3.72 ± 0.14, 5.67 ± 0.61, and more than 6 log10 cycles of inactivation at 25.0, 40.0, 50.0, 52.5, 55.0, 57.5, and 60.0 °C, respectively. The optimum conditions for exploiting the synergistic effects were UV doses of 27.10 J/mL, temperature of 55.0 °C, and 3.58 min of treatment time. This treatment guaranteed more of 5 log10 reductions of the cocktail of five strains of E. coli without affecting pH, °Brix, and acidity of freshly squeezed apple juice. The UV-H treatment did not increase the loss of ascorbic acid compared to the same UV treatment at room temperature but approximately doubled the inactivation of polifenoloxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adzahan, N. (2006). Effects of ultraviolet treatment on water soluble vitamin retention in aqueous model solutions and apple juice. PhD Thesis. Ithaca: Department of Food Technology, Cornell University.

    Google Scholar 

  • Alonzo, G. (2012). Inactivation of Escherichia coli O157:H7 and spoilage yeasts in germicidal UV-C-irradiated and heat-treated clear apple juice. Food Control, 25(2), 425–432.

    Article  Google Scholar 

  • Álvarez, I., Mañas, P., Sala, F. J., & Condón, S. (2003). Inactivation of Salmonella enterica serovar enteritidis by ultrasonic waves under pressure at different water activities. Applied and Environmental Microbiology, 69(1), 668–672.

    Article  Google Scholar 

  • AOAC. (1990a). Acidity (as acid citric). Method 942.15B. Official methods of analysis of the Association of Official Analytical Chemists (15th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • AOAC. (1990b). Vitamin C (ascorbic acid). Method 967.21.Official methods of analysis of the Association of Official Analytical Chemists (15th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Arroyo, C., Condón, S., & Pagán, R. (2009). Thermobacteriological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136(1), 110–118.

    Article  CAS  Google Scholar 

  • Arroyo, C., Cebrián, G., Pagán, R., & Condón, S. (2011). Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. International Journal of Food Microbiology, 144(3), 446–454.

    Article  CAS  Google Scholar 

  • Basaran, N., Quintero-Ramos, A., Moake, M. M., Churey, J. J., & Worobo, R. W. (2004). Influence of apple cultivars on inactivation of different strains of a Escherichia coli O157:H7 in apple cider by UV irradiation. Applied and Environmental Microbiology, 70(10), 6061–6065.

    Article  CAS  Google Scholar 

  • Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry—a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645.

    Article  CAS  Google Scholar 

  • Chapman, P. A., Wright, D. J., Norman, P., Fox, J., & Crick, E. (1993). Cattle as a possible source of verocytotoxin-producing Escherichia coli O157 infections in man. Epidemiology and Infection, 111(3), 439–447.

    Article  CAS  Google Scholar 

  • Char, C. D., Mitilinaki, E., Guerrero, S. N., & Alzamora, S. M. (2010). Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food and Bioprocess Technology, 3(3), 797–803.

    Article  Google Scholar 

  • Choi, L. H., & Nielsen, S. S. (2005). The effect of thermal and non-thermal processing methods on apple cider quality and consumer acceptability. Journal of Food Quality, 28(1), 13–29.

    Article  Google Scholar 

  • Condón, S., Oria, R., & Trepat, F. J. S. (1987). Heat resistance of microorganisms: an improved method for survival counting. Journal of Microbiological Methods, 7(1), 37–44.

    Article  Google Scholar 

  • Condón, S., Arrizubieta, M., & Sala, F. J. (1993). Microbial heat resistance determinations by the multipoint system with the thermoresistometer TR-SC. Improvement of this methodology. Journal of Microbiological Methods, 18(4), 357–366.

    Article  Google Scholar 

  • Duffy, S., & Schaffner, D. W. (2001). Modeling the survival of Escherichia coli O157:H7 in apple cider using probability distribution functions. Journal of Food Protection, 64(5), 599–605

    Google Scholar 

  • Enache, E., Maathusa, E. C., Elliott, P. H., Black, D. G., Chen, Y. H., Scott, V. N., et al. (2011). Thermal resistance parameters for shiga toxin-producing Escherichia coli in apple juice. Journal of Food Protection, 74(8), 1231–1237.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1997) Final report. A set of scientific issues being considered by the agency in connection with the efficacy testing issues concerning public health antimicrobial issues. Available at: www.epa.gov. Accessed 28 Jan 2012

  • Espina, L., Somolinos, M., Pagán, R., & García, D. (2010). Effect of citral on the thermal inactivation of Escherichia coli O157:H7 in citrate phosphate buffer and apple juice. Journal of Food Protection, 73(12), 2189–2196.

    CAS  Google Scholar 

  • Falguera, V., Pagán, J., & Ibarz, A. (2011). Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT–Food. Science and Technology, 44(1), 115–119.

    CAS  Google Scholar 

  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: protective effect of melanins. Journal of Food Engineering, 110(2), 305–309.

    Article  CAS  Google Scholar 

  • Franz, C. M. A. P., Specht, I., Cho, G. S., Graef, V., & Stahl, M. R. (2009). UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control, 20(12), 1103–1107.

    Article  CAS  Google Scholar 

  • Gachovska, T. K., Kumar, S., Thippareddi, H., Subbiah, J., & Williams, F. (2008). Ultraviolet and pulsed electric field treatments have additive effect on inactivation of E. coli in apple juice. Journal of Food Science, 73(9), M412–M417.

    Article  CAS  Google Scholar 

  • Gayán, E., Monfort, S., Álvarez, I., & Condón, S. (2011). UV-C inactivation of Escherichia coli at different temperatures. Innovative Food Science & Emerging Technologies, 12(4), 531–541.

    Article  Google Scholar 

  • Geeraerd, A. H., Herremans, C. H., & Van Impe, J. F. (2000). Structural model requirements to describe microbial inactivation during a mild heat treatment. International Journal of Food Microbiology, 59(3), 185–209.

    Article  CAS  Google Scholar 

  • Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102(1), 95–105.

    Article  CAS  Google Scholar 

  • Geveke, D. J. (2005). UV inactivation of bacteria in apple cider. Journal of Food Protection, 68(8), 1739–1742.

    Google Scholar 

  • Geveke, D. J. (2008). UV inactivation of E. coli in liquid egg white. Food and Bioprocess Technology, 1(2), 201–206.

    Article  Google Scholar 

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Advantages and limitations on processing foods by UV light. Food Science and Technology International, 10(3), 137–147.

    Article  Google Scholar 

  • Gui, F., Wu, J., Chen, F., Liao, X., Hu, X., Zhang, Z., et al. (2006). Change of polyphenol oxidase activity, color, and browning degree during storage of cloudy apple juice treated by supercritical carbon dioxide. European Food Research and Technology, 223(3), 427–432.

    Article  CAS  Google Scholar 

  • Harm, W. (1980). Biological effects of ultraviolet radiation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Keyser, M., Muller. I., Cillier. P., Nel W., & Gouws, P. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies 9(3), 348–354.

    Google Scholar 

  • Komthong, P., Igura, N., & Shimoda, M. (2007). Effect of ascorbic acid on the odours of cloudy apple juice. Food Chemistry, 100(4), 1342–1349.

    Article  CAS  Google Scholar 

  • Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science & Emerging Technologies, 5(2), 179–189.

    Article  Google Scholar 

  • Koutchma, T., Paris, B., & Patazca, E. (2007). Validation of UV coiled tube reactor for fresh juices. Journal of Environmental Engineering and Science, 6(3), 319–328.

    Article  CAS  Google Scholar 

  • Koutchma, T., Forney, L. J., & Moraru, C. L. (2009). Ultraviolet light in food technology. Boca Raton: CRC.

    Book  Google Scholar 

  • Leistner, L. (1992). Food preservation by combined methods. Food Research International, 25(2), 151–158.

    Article  Google Scholar 

  • Liltved, H., & Cripps, S. J. (1999). Removal of particle-associated bacteria by prefiltration and ultraviolet irradiation. Aquaculture Research, 30(6), 445–450.

    Article  Google Scholar 

  • Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10(4), 506–511.

    Article  CAS  Google Scholar 

  • Mazzotta, A. S. (2001). Thermal inactivation of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in fruit juices. Journal of Food Protection, 64(3), 315–320.

    CAS  Google Scholar 

  • Müller, A., Stahl, M. R., Graef, V., Franz, C. M. A. P., & Huch, M. (2011). UV-C treatment of juices to inactivate microorganisms using Dean vortex technology. Journal of Food Engineering, 107(2), 268–275.

    Article  Google Scholar 

  • Muñoz, A., Palgan, I., Noci, F., Morgan, D. J., Cronin, D. A., Whyte, P., et al. (2011). Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiology, 28(6), 1200–1204.

    Article  Google Scholar 

  • Ngadi, M., Smith, J. P., & Cayouette, B. (2003). Kinetics of ultraviolet light inactivation of Escherichia coli O157: H7 in liquid foods. Journal of the Science of Food and Agriculture, 8(15), 1551–1555.

    Article  Google Scholar 

  • Noci, F., Riener, J., Walkling-Ribeiro, M., Cronin, D. A., Morgan, D. J. & Lyng, J. G. (2008). Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. Journal of Food Engineering, 85(1), 141–146.

    Google Scholar 

  • Oteiza, J. M., Giannuzzi, L., & Zaritzky, N. (2010). Ultraviolet treatment of orange juice to inactivate E. coli O157:H7 as affected by native microflora. Food and Bioprocess Technology, 3(4), 603–614.

    Article  Google Scholar 

  • Quintero-Ramos, A., Churey, J. J., Hartman, P., Barnard, J., & Worobo, R. W. (2004). Modeling of Escherichia coli inactivation by UV irradiation at different pH values in apple cider. Journal of Food Protection, 67(6), 1153–1156.

    Google Scholar 

  • Raso, J., & Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265–285.

    Article  Google Scholar 

  • Raso, J., Pagán, R., Condón, S., & Sala, F. J. (1998). Influence of temperature and pressure on the lethality of ultrasound. Applied and Environmental Microbiology, 64(2), 465–471.

    CAS  Google Scholar 

  • Seiji, M., & Iwashita, S. (1965). Enzyme inactivation by ultraviolet light and protective effect of melanin. Journal of Biochemistry, 57(3), 457–459.

    CAS  Google Scholar 

  • Sizer, C. E., & Balasubramaniam, V. M. (1999). New intervention processes for minimally processed juices. Food Technology, 53(10), 64–67.

    Google Scholar 

  • Splittstoesser, D. F., Mclellan, M. R., & Churey, J. J. (1996). Heat resistance of Escherichia coli O157:H7 in apple juice. Journal of Food Protection, 59(3), 226–229.

    CAS  Google Scholar 

  • Tikekar, R. V., Anantheswaran, R. C., & Laborde, L. F. (2011). Ascorbic acid degradation in a model apple juice system and in apple juice during ultraviolet processing and storage. Journal of Food Science, 76(15), H62–H71.

    Article  CAS  Google Scholar 

  • Torkamani, A. E., & Niakousari, M. (2011). Impact of UV-C light on orange juice quality and shelf life. Food Research Journal, 18(4), 1265–1268.

    CAS  Google Scholar 

  • Tran, M. T. T., & Farid, M. (2004). Ultraviolet treatment of orange juice. Innovative Food Science & Emerging Technologies, 5(4), 495–502.

    Article  CAS  Google Scholar 

  • Ukuku, D. O., & Geveke, D. J. (2010). A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice. International Journal of Food Microbiology, 138(1–2), 50–55.

    Article  CAS  Google Scholar 

  • Ülker-Yerlitürk, F., Arslan, O., Sinan, S., Gencer, N., & Özensoy, O. (2008). Characterization of polyphenol oxidase from wild pear (Pyrus elaegrifolia). Journal of Food Biochemistry, 32(3), 368–383.

    Article  Google Scholar 

  • Unluturk, S., Atilgan, M. R., Baysal, A. H., & Unluturk, M. S. (2010). Modeling inactivation kinetics of liquid egg white exposed to UV-C irradiation. International Journal of Food Microbiology, 142(3), 341–347.

    Article  Google Scholar 

  • US Food and Drug Administration. (2000). Irradiation in the production, processing and handling of food. Title 21, part 179. Federal register, 65. Washington: US Food and Drug Administration.

    Google Scholar 

  • US Food and Drug Administration. (2001). Hazard analysis and critical control points (HACCP): final rule. Federal Register 66. Washington: US Food and Drug Administration.

    Google Scholar 

  • Vojdani, J. D., Beuchat, L. R., & Tauxe, R. V. (2008). Juice-associated outbreaks of human illness in the United States, 1995 through 2005. Journal of Food Protection, 71(2), 356–364.

    Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Cronin, D. A., Riener, J., Lyng, J. G., & Morgan, D. J. (2008). Reduction of Staphylococcus aureus and quality changes in apple juice processed by ultraviolet irradiation, pre-heating and pulsed electric fields. Journal of Food Engineering, 89(3), 267–273.

    Article  Google Scholar 

  • Webb, R. B., & Brown, M. S. (1976). Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations. Photochemistry and Photobiology, 24(5), 425–432.

    Article  CAS  Google Scholar 

  • Wright, J. R., Sumner, S. S., Hackney, C. R., Pierson, M. D., & Zoecklein, B. W. (2000). Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. Journal of Food Protection, 63(5), 563–567.

    CAS  Google Scholar 

Download references

Acknowledgments

This study has been carried out with financial support from the Ministerio de Ciencia e Innovación de España, EU-FEDER (CIT020000-2009-40) and the Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón. S. M., E. G. and M. J. S. gratefully acknowledge the financial support for their doctoral studies from the Ministerio de Educación y Ciencia de España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Condón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayán, E., Serrano, M.J., Monfort, S. et al. Pasteurization of Apple Juice Contaminated with Escherichia coli by a Combined UV–Mild Temperature Treatment. Food Bioprocess Technol 6, 3006–3016 (2013). https://doi.org/10.1007/s11947-012-0937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0937-z

Keywords

Navigation