Skip to main content
Log in

Ultraviolet Light-Assisted Photocatalytic Disinfection of Escherichia coli and Its Effects on the Quality Attributes of White Grape Juice

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) light-assisted titanium dioxide (TiO2) photocatalysis is an emerging technology in food safety that utilizes TiO2 photocatalysts to accelerate the generation of reactive oxygen species during UV illumination. In this work, we studied the use of immobilized TiO2-SiO2 photocatalysts illuminated with UVA radiation (350 nm; 14.8 mW/cm2) for the inactivation of Escherichia coli ATCC 25922 in white grape juice, and compared the effectiveness of the photocatalytic disinfection with respect to the quality attributes of white grape juice against those of thermal and UVC (254 nm; 19.7 mW/cm2) treated samples. To obtain a 5-log reduction of the target microorganism, treatment durations of UVA in the absence and presence of the photocatalyst were 60 and 40 min, respectively. A 5-log reduction with UVC radiation led to the loss of health-related compounds such as vitamin C, total phenolic content, and total antioxidant capacity at 92.0 ± 1.1%, 19.4 ± 5.6%, and 54.3 ± 10.0%, respectively. However, the same level of reduction with UVA led to a loss of 74.2 ± 2.3%, 7.1 ± 3.6%, and 39.7 ± 2.5%, and with UVA-assisted photocatalytic method resulted in a loss of 75.8 ± 6.1%, 13.6 ± 5.8%, and 45.6 ± 4.4% of vitamin C, total phenolic content, and total anti-oxidant capacity, respectively. Given its efficacy in deactivating E. coli while retaining a relatively higher level of health-related constituents in the fruit juice compared to other common pasteurization techniques, the photocatalyst developed in this study provides a promising technology for food disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akgun, B. A., Wren, A. W., Durucan, C., Towler, M. R., & Mellott, N. P. (2011). Sol–gel derived silver-incorporated titania thin films on glass: bactericidal and photocatalytic activity. Journal of Sol-Gel Science and Technology, 59(2), 228–238.

    Article  CAS  Google Scholar 

  • Anderson, C., & Bard, A. J. (1995). An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. Journal of Physical Chemistry, 99(24), 9882–9885.

    Article  CAS  Google Scholar 

  • Anpo, M., Nakaya, H., Kodama, S., Kubokawa, Y., Domen, K., & Onishi, T. (1986). Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium–silicon oxides. Journal of Chemical Physics, 90, 1633–1636.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Acidity. Method 942.15. Official methods of analysis (15th ed.). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • AOAC. (2007). Vitamin C (ascorbic acid). Method 967.21. Official methods of analysis (18th ed.). Association of Official Analytical Chemists.

  • Balasubramanian, G., Dionysiou, D., Suidan, M., Baudin, I., & Laine, J. (2004). Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Applied Catalysis B Environmental, 47(2), 73–84.

    Article  CAS  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1999). [2] Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27.

    Article  CAS  Google Scholar 

  • Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680–686.

    Article  CAS  Google Scholar 

  • Chai, C., Lee, J., Lee, Y., Na, S., & Park, J. (2014). A combination of TiO2-UV photocatalysis and high hydrostatic pressure to inactivate Bacillus cereus in freshly squeezed Angelica keiskei juice. LWT - Food Science and Technology, 55(1), 104–109.

    Article  CAS  Google Scholar 

  • Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288–292.

    Article  CAS  Google Scholar 

  • Chen, Y., & Dionysiou, D. D. (2006). Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B Environmental, 69(1-2), 24–33.

    Article  CAS  Google Scholar 

  • Chia, S. L., Shamsudin, R., Mohd Adzahan, N., & Wan Daud, W. R. (2012). The effect of storage on the quality attributes of ultraviolet-irradiated and thermally pasteurised pineapple juices. International Food Research Journal, 19(3), 1001–1010.

    CAS  Google Scholar 

  • Cho, M., Choi, Y., Park, H., Kim, K., Woo, G., & Park, J. (2007). Titanium dioxide/UV photocatalytic disinfection in fresh carrots. Journal of Food Protection, 70(1), 97–101.

    Article  CAS  Google Scholar 

  • Choi, H., Stathatos, E., & Dionysiou, D. D. (2007). Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 202(1), 199–206.

    Article  CAS  Google Scholar 

  • de Sá Borges, R., da Silva, G. A., Roberto, S. R., de Assis, A. M., & Yamamoto, L. Y. (2013). Phenolic compounds, favorable oxi-redox activity and juice color of ‘Concord’ grapevine clones. Scientia Horticulturae, 161, 188–192.

    Article  Google Scholar 

  • Donahue, D. W., Canitez, N., & Bushway, A. A. (2004). UV inactivation of E. coli O157:H7 in apple cider: quality, sensory and shelf-life analysis. Journal of Food Processing and Preservation, 28(5), 368–387.

    Article  Google Scholar 

  • Falguera, V., Garvín, A., Garza, S., Pagán, J., & Ibarz, A. (2013). Effect of UV–Vis photochemical processing on pear juices from six different varieties. Food and Bioprocess Technology, 7(1), 84–92.

    Article  Google Scholar 

  • Feng, M., Ghafoor, K., Seo, B., Yang, K., & Park, J. (2013). Effects of ultraviolet-C treatment in Teflon®-coil on microbial populations and physico-chemical characteristics of watermelon juice. Innovative Food Science and Emerging Technologies, 19, 133–139.

    Article  CAS  Google Scholar 

  • Gayán, E., Serrano, M. J., Monfort, S., Álvarez, I., & Condón, S. (2013). Pasteurization of apple juice contaminated with Escherichia coli by a combined UV–mild temperature treatment. Food and Bioprocess Technology, 6(11), 3006–3016.

    Article  Google Scholar 

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2005). Reduction of saccharomyces cerevisiae, escherichia coli and listeria innocua in apple juice by ultraviolet light. Journal of Food Process Engineering, 28(5), 437-452.

    Article  Google Scholar 

  • Guneser, O., & Karagul Yuceer, Y. (2012). Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. Journal of Dairy Science, 95(11), 6230–6241.

    Article  CAS  Google Scholar 

  • Hakguder Taze, B., Unluturk, S., Buzrul, S., & Alpas, H. (2015). The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. Journal of Food Science and Technology, 52(2), 1000–1007.

    Article  CAS  Google Scholar 

  • Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2003). Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B., 107(19), 4545–4549.

    Article  CAS  Google Scholar 

  • Ibarz, A., & Esplugas, S. (1989). Ingeniería fotoquímica. Aplicación a la industria alimentaria. Theknos, 110, 8–14.

    Google Scholar 

  • Ibarz, A., Pagán, J., Panadés, R., & Garza, S. (2005). Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering., 69(2), 155–160.

    Article  Google Scholar 

  • Kennedy, J. F., Rivera, Z. S., Lloyd, L. L., Warner, F. P., & Jumel, K. (1990). Studies on non-enzymic browning in orange juice using a model system based on freshly squeezed orange juice. Journal of Science of Food and Agriculture, 52(1), 85–95.

    Article  CAS  Google Scholar 

  • Khadem-Hosseini, A., Mirabedini, S. M., & Pazokifard, S. (2016). Photocatalytic activity and colloidal stability of various combinations of TiO2/SiO2 nanocomposites. Journal of Materials Science, 51(6), 3219–3230.

    Article  CAS  Google Scholar 

  • Kim, Y., Choi, Y., Kim, S., Park, J., Chung, M., Song, K. B., Hwang, I., Kwon, K., & Park, J. (2009). Disinfection of iceberg lettuce by titanium dioxide-UV photocatalytic reaction. Journal of Food Protection, 72(9), 1916–1922.

    Article  Google Scholar 

  • Kim, Y., Jeong, S., Back, K., Park, K., Chung, M., & Kang, D. (2013a). Effect of various conditions on inactivation of escherichia coli O157:H7, salmonella typhimurium, and listeria monocytogenes in fresh-cut lettuce using ultraviolet radiation. International Journal of Food Microbiology, 166(3), 349–355.

    Article  CAS  Google Scholar 

  • Kim, S., Ghafoor, K., Lee, J., Feng, M., Hong, J., Lee, D., et al. (2013b). Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Water Research, 47(13), 4403–4411.

    Article  CAS  Google Scholar 

  • Koutchma, T., Keller, S., Chirtel, S., & Parisi, B. (2004). Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies, 5(2), 179–189.

    Article  Google Scholar 

  • Koutchma, T., Forney, L. J., & Moraru, C. I. (2009). Ultraviolet light in food technology; principles and applications. Scitech Book News 33(2) Portland: Ringgold Inc.

  • Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comprehensive Reviews in Food Science and Food Safety, 1–24.

  • Kuhn, H. J., Braslavsky, S. E., & Schmidt, R. (2004). Chemical actinometry (IUPAC technical report). Pure Applied Chemistry, 76(12), 2105–2146.

    Article  CAS  Google Scholar 

  • McCullagh, C., Robertson, J. M., Bahnemann, D. W., & Robertson, P. K. (2007). The application of TiO 2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Research on Chemical Intermediates, 33(3), 359–375.

    Article  CAS  Google Scholar 

  • Müller, A., Günthner, K. A., Stahl, M. R., Greiner, R., Franz, C. M. A. P., & Posten, C. (2015). Effect of physical properties of the liquid on the efficiency of a UV-C treatment in a coiled tube reactor. Innovative Food Science & Emerging Technologies, 29, 240–246.

    Article  Google Scholar 

  • Nualkaekul, S., & Charalampopoulos, D. (2011). Survival of Lactobacillus plantarum in model solutions and fruit juices. International Journal of Food Microbiology, 146(2), 111–117.

    Article  CAS  Google Scholar 

  • Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203(1), 82–86.

    Article  CAS  Google Scholar 

  • Ohtani, B., Ogawa, Y., & Nishimoto, S. (1997). Photocatalytic activity of amorphous−anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Journal of Physical Chemistry B, 101(19), 3746–3752.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., Elez-Martínez, P., & Martín-Belloso, O. (2012). Stability of health-related compounds in plant foods through the application of non-thermal processes. Trends in Food Science and Technology, 23(2), 111–123.

    Article  CAS  Google Scholar 

  • Orlowska, M., Koutchma, T., Kostrzynska, M., & Tang, J. (2015). Surrogate organisms for pathogenic O157: H7 and non-O157 Escherichia coli strains for apple juice treatments by UV-C light at three monochromatic wavelengths. Food Control, 47, 647–655.

    Article  CAS  Google Scholar 

  • Oteiza, J. M., Giannuzzi, L., & Zaritzky, N. (2010). Ultraviolet treatment of orange juice to inactivate E. coli O157:H7 as affected by native microflora. Food and Bioprocess Technology, 3(4), 603–614.

    Article  Google Scholar 

  • Pala, Ç. U., & Toklucu, A. K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food and Bioprocess Technology, 6(3), 719–725.

    Article  CAS  Google Scholar 

  • Park, D., Shahbaz, H. M., Kim, S. H., Lee, M., Lee, W., Oh, J. W., Lee, D. U., & Park, J. (2016). Inactivation efficiency and mechanism of UV-TiO2 photocatalysis against murine norovirus using a solidified agar matrix. International Journal of Food Microbiology, 238, 256–264.

    Article  CAS  Google Scholar 

  • Ramesh, T., Nayak, B., Amirbahman, A., Tripp, C. P., & Mukhopadhyay, S. (2016). Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: a review. Innovative Food Science and Emerging Technologies, 38, 105–115.

    Article  CAS  Google Scholar 

  • Rivas, A., Rodrigo, D., Martínez, A., Barbosa-Cánovas, G. V., & Rodrigo, M. (2006). Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT-Food Science and Technology, 39(10), 1163–1170.

    Article  CAS  Google Scholar 

  • Santhirasegaram, V., Razali, Z., George, D. S., & Somasundram, C. (2015). Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (Mangifera indica L.) juice. Food and Bioproducts Processing, 94, 313–321.

    Article  CAS  Google Scholar 

  • Sauer, A., & Moraru, C. I. (2009). Inactivation of escherichia coli ATCC 25922 and escherichia coli O157:H7 in apple juice and apple cider, using pulsed light treatment. Journal of Food Protection, 72(5), 937–944.

    Article  Google Scholar 

  • Shahbaz, H. M., Kim, S., Hong, J., Kim, J. U., Lee, D., Ghafoor, K., & Park, J. (2016a). Effects of TiO2-UVC photocatalysis and thermal pasteurization on microbial inactivation and quality characteristics of the Korean rice-and-malt drink sikhye. International Journal of Food Science and Technology, 51(1), 123–132.

    Article  CAS  Google Scholar 

  • Shahbaz, H. M., Yoo, S., Seo, B., Ghafoor, K., Kim, J. U., Lee, D., & Park, J. (2016b). Combination of TiO2-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food and Bioprocess Technology, 9(1), 182–190.

    Article  CAS  Google Scholar 

  • Shan, A. Y., Ghazi, T. I. M., & Rashid, S. A. (2010). Immobilization of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Applied Catalysis A, 389(1–2), 1–8.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • U.S. FDA (2004) Guidance for industry: juice HACCP hazards and controls guidance 1st Edn. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Juice/ucm072557.htm. Accessed 02 Jan 2018.

  • U.S. FDA (2015a). 21 CFR 73.575. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=73.575 Accessed 27 Oct 2015.

  • U.S. FDA (2015b). Kinetics of microbial inactivation for alternative food processing technologies—ultraviolet light. Retrieved 08/30, 2016, from http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm103137.htm. Accessed 30 Aug 2016.

  • U.S. FDA (2016). Guidance for industry: juice HACCP hazards and controls guidance first edition; final guidance. http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Juice/ucm072557.htm. Accessed 11 Dec 2016.

  • U.S. FDA (2016a). 21CFR172.480. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.480. Accessed 09 Dec 2016.

  • U.S. FDA (2016b). 21CFR73.575. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=73.575. Accessed 09 Dec 2016.

  • Unluturk, S., & Atilgan, M. R. (2015). Microbial safety and shelf life of UV-C treated freshly squeezed white grape juice. Journal of Food Science, 80(8), M1831–M1841.

    Article  CAS  Google Scholar 

  • WHO (2015). Food safety fact sheet N°399. http://www.who.int/mediacentre/factsheets/fs399/en. Accessed 01 Aug 2016.

  • Worobo, R. W. (2000). Efficacy of the CiderSure 3500 ultraviolet light unit in apple cider (pp. 1–6). Ithaca: Cornell University, Department of Food Science and Technology.

    Google Scholar 

  • Yaparatne, S., Tripp, C. P., & Amirbahman, A. (2018). Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts. Journal of Hazardous Materials, 346, 208–217.

    Article  CAS  Google Scholar 

  • Yemmireddy, V. K., & Hung, Y. C. (2015). Selection of photocatalytic bactericidal titanium dioxide (TiO2) nanoparticles for food safety applications. LWT-Food Science and Technology, 61(1), 1–6.

    Article  CAS  Google Scholar 

  • Yemmireddy, V. K., & Hung, Y. C. (2017). Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety—opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety, 16(4), 617–631.

    Article  CAS  Google Scholar 

  • Yoo, S., Ghafoor, K., Kim, J. U., Kim, S., Jung, B., Lee, D., & Park, J. (2015a). Inactivation of Escherichia coli O157:H7 on orange fruit surfaces and in juice using photocatalysis and high hydrostatic pressure. Journal of Food Protection, 78(6), 1098–1105.

    Article  CAS  Google Scholar 

  • Yoo, S., Ghafoor, K., Kim, S., Sun, Y. W., Kim, J. U., Yang, K., Lee, D., Shahbaz, H. M., & Park, J. (2015b). Inactivation of pathogenic bacteria inoculated onto a Bacto™ agar model surface using TiO2-UVC photocatalysis, UVC and chlorine treatments. Journal of Applied Microbiology, 119(3), 688–696.

    Article  CAS  Google Scholar 

  • Yu, J., Zhao, X., & Zhao, Q. (2000). Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films, 379(1–2), 7–14.

    Article  CAS  Google Scholar 

  • Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., Ma, Y., & Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 254–260.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the United States Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA) Hatch No: ME021408, Maine Agricultural and Forest Experiment Station, University of Maine, Orono, ME, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aria Amirbahman.

Electronic Supplementary Material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, T., Yaparatne, S., Tripp, C.P. et al. Ultraviolet Light-Assisted Photocatalytic Disinfection of Escherichia coli and Its Effects on the Quality Attributes of White Grape Juice. Food Bioprocess Technol 11, 2242–2252 (2018). https://doi.org/10.1007/s11947-018-2182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2182-6

Keywords

Navigation