Skip to main content
Log in

Lactobacillus: the Next Generation of Malolactic Fermentation Starter Cultures—an Overview

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, it contributes to microbial stability and lastly it contributes to wine aroma through the production of metabolites. Oenococcus oeni is the main species used in commercially available starter culture currently, but research has indicated that different Lactobacillus species also partake in MLF and this has shifted the focus in the MLF field to evaluate the potential of lactobacilli as starter cultures for the future. There are 17 different species of Lactobacillus associated with winemaking either being associated with the grapes/beginning of alcoholic fermentation or the MLF and wine. Lactobacillus associated with wine is mainly facultative or obligatory heterofermentative and can withstand the harsh wine conditions such as high ethanol levels, low pH and temperatures and sulphur dioxide. Wine lactobacilli contain the malolactic enzyme encoding gene, but sequence homology shows that it clusters separate from O. oeni. Lactobacillus also possesses more enzyme encoding genes compared to O. oeni, important for the production of wine aroma compounds such as glycosidase, protease, esterase, phenolic acid decarboxylase and citrate lyase. Another characteristic associated with wine lactobacilli is the production of bacteriocins, especially plantaricins which would enable them to combat spoilage LAB. All these characteristics, together with their ability to conduct MLF just as efficiently as O. oeni, make them suitable for a new generation of MLF starter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberto, M. R., Arena, M. E., & Manca de Nadra, M. C. (2007). Putrescine production from agmatine by Lactobacillus hilgardii: Effect of phenolic compounds. Food Control, 18, 898–903.

    Article  CAS  Google Scholar 

  • Alexandre, H., Costello, P. J., Remize, F., Guzzo, J., & Guillox-Benatier, M. (2004). Saccharomyces cerevisiaeOenococcus oeni interactions in wine: Current knowledge and perspectives. International Journal of Food Microbiology, 93, 141–154.

    Article  CAS  Google Scholar 

  • Amerine, M. A., & Kunkee, R. E. (1968). Microbiology of winemaking. Annual Review of Microbiology, 22, 323–358.

    Article  CAS  Google Scholar 

  • Amerine, M. A., & Ough, C. S. (1980). Methods of analysis of musts and wines. New York: Wiley.

    Google Scholar 

  • Amoroso, M. J., Saguir, F. M., & Manca de Nadra, M. C. (1993). Variation of nutritional requirements of Leuconostoc oenos by organic acids. Journal International des Sciences de la Vigne et du Vin, 27, 135–144.

    Google Scholar 

  • Araque, I., Gil, J., Carreté, R., Bordons, A., & Reguant, C. (2009). Detection of arc genes related with the ethyl carbamate precursors in wine lactic acid bacteria. Journal of Agricultural and Food Chemistry, 57, 1841–1847.

    Article  CAS  Google Scholar 

  • Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnology Advanced, 24, 238–242.

    Article  CAS  Google Scholar 

  • Arena, M. E., & Manca de Nadra, M. C. (2001). Biogenic amine production by Lactobacillus. Journal of Applied Microbiology, 90, 158–162.

    Article  CAS  Google Scholar 

  • Arena, M. E., Saguir, F. M., & Manca de Nadra, M. C. (1999). Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. International Journal of Food Microbiology, 52, 155–161.

    Article  CAS  Google Scholar 

  • Arena, M. E., Fiocco, D., Manca de Nadra, M. C., Pardo, I., & Spano, G. (2007). Characterization of a Lactobacillus plantarum strain able to produce tyramine and partial cloning of a putative tyrosine decarboxylase gene. Current Microbiology, 55, 205–210.

    Article  CAS  Google Scholar 

  • Back, W. (1978). Elevation of Pediococcus cerevisiae subsp. dextrinicus Coster and White to species status Pediococcus dextrinicus (Coster and White) comb. nov. International Journal of Systematic Bacteriology, 28, 523–527.

    Article  Google Scholar 

  • Bae, S., Fleet, G. H., & Heards, G. M. (2006). Lactic acid bacteria associated with wine grapes from several Australian vineyards. Journal of Applied Microbiology, 100, 712–727.

    Article  CAS  Google Scholar 

  • Bartowsky, E. J. (2009). Bacterial spoilage of wine and approaches to minimize it. Letters in Applied Microbiology, 48, 149–156.

    Article  CAS  Google Scholar 

  • Bartowsky, E. J., & Henschke, P. A. (2004). The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. International Journal of Food Microbiology, 96, 235–252.

    Article  CAS  Google Scholar 

  • Bauer, R., Nel, H. A., & Dicks, L. M. T. (2003). Pediocin PD-1 as a method to control growth of Oenococcus oeni in wine. American Journal of Enology and Viticulture, 54, 86–91.

    CAS  Google Scholar 

  • Bauer, R., Du Toit, M., & Kossmann, J. (2010). Influence of environmental parameters on production of the acrolein precursor 3-hydroxypropionaldehyde by Lactobacillus reuteri DSMZ 20016 and its accumulation by wine lactobacilli. International Journal of Food Microbiology, 137, 28–31.

    Article  CAS  Google Scholar 

  • Beneduce, L., Spano, G., Vernile, A., Tarantino, D., & Massa, S. (2004). Molecular characterization of lactic acid populations associated with wine spoilage. Journal of Basic Microbiology, 44, 10–16.

    Article  CAS  Google Scholar 

  • Borneman, A. R., Bartowsky, E. J., McCarthy, J., & Chambers, P. J. (2010). Genotypic diversity in Oenococcus oeni by high-density microarray comparative genome hybridization and whole genome sequencing. Applied Microbiology and Biotechnology, 86, 681–691.

    Article  CAS  Google Scholar 

  • Bossi, A., Rinalducci, S., Zolla, L., Antonioli, P., Righetti, P. G., & Zapparoli, G. (2007). Effect of tannic acid on Lactobacillus hilgardii analysed by a proteomic approach. Applied Microbiology, 102, 787–795.

    Article  CAS  Google Scholar 

  • Bou, M., & Krieger, S. (2004). Alcohol-tolerant malolactic strains for the maturation of wines with average or high pH (Pub. N: WO/2004/111179; PCT/FR2004/001421).

  • Bou, M., & Powell, C. (2006). Strain selection techniques. In R. Morenzoni (Ed.), Malolactic fermentation in wine—understanding the science and the practice (pp. 6.1–6.8). Montréal: Lallemand.

    Google Scholar 

  • Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1996). In R. B. Boulton (Ed.), Principles and practices of winemaking. New York: Chapman and Hall.

    Google Scholar 

  • Campos, F. M., Figueiredo, A. R., Hogg, T. A., & Couto, J. A. (2009a). Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine. Food Microbiology, 26, 409–414.

    Article  CAS  Google Scholar 

  • Campos, F. M., Couto, J. A., Figueiredo, A. R., Tóth, I. V., Rangel, A. O. S. S., & Hogg, T. A. (2009b). Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. International Journal of Food Microbiology, 135, 144–151.

    Article  CAS  Google Scholar 

  • Caridi, A., & Corte, V. (1997). Inhibition of malolactic fermentation by cryotolerant yeasts. Biotechnology Letters, 19, 723–726.

    Article  CAS  Google Scholar 

  • Carr, J. G., & Davies, P. A. (1970). Homofermentative lactobacilli of ciders including Lactobacillus mali sp. nov. The Journal of Applied Bacteriology, 33, 768–774.

    CAS  Google Scholar 

  • Carr, J. G., & Davies, P. A. (1972). The ecology and classification of strains of Lactobacillus collinoides nov. spec.: A bacterium commonly found in fermenting apple juice. The Journal of Applied Bacteriology, 35, 463–471.

    CAS  Google Scholar 

  • Carre, E. (1982). Recherches sur la croissance des bacteries lactiques en vinification. Désacidification biologique des vins. PhD thesis. Université de Bordeaux II, Bordeaux, France.

  • Cavin, J. F., Andioc, V., Etievant, P. X., & Davies, C. (1993). Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. American Journal of Enology and Viticulture, 44, 76–80.

    CAS  Google Scholar 

  • Cavin, J. F., Barthelmebs, L., & Diviès, C. (1997). Molecular characterization of an inducible ρ-coumaric acid decarboxylase from Lactobacillus plantarum: Gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification and characterization. Applied and Environmental Microbiology, 66, 3368–3375.

    Google Scholar 

  • Chang, I. S., Kim, B. H., & Shin, P. K. (1997). Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Applied and Environmental Microbiology, 63, 1–6.

    CAS  Google Scholar 

  • Charpentier, C., & Feuillat, M. (1993). Yeast autolysis. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 225–242). Switzerland: Harwood Academic.

    Google Scholar 

  • Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Pons, M. (1992). The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture, 60, 165–178.

    Article  CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., & Boidron, J. N. (1995). The influence of Brettanomyces/Dekkera sp. yeast and lactic acid bacteria on the ethylphenol content of red wines. American Journal of Enology and Viticulture, 46, 463–468.

    CAS  Google Scholar 

  • Chisholm, M. G., & Samuels, J. M. (1992). Determination of the impact of the metabolites of sorbic acid on the odor of a spoiled red wine. Journal of Agricultural and Food Chemistry, 40, 630–633.

    Article  CAS  Google Scholar 

  • Claisse, O., & Lonvaud-Funel, A. (2000). Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider. Food Microbiology, 17, 513–519.

    Article  CAS  Google Scholar 

  • Comitini, F., Ferretti, R., Clementi, F., Mannazzu, I., & Ciani, M. (2005). Interactions between Saccharomyces cerevisiae and malolactic bacteria: Preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. Journal of Applied Microbiology, 99, 105–111.

    Article  CAS  Google Scholar 

  • Constantini, A., Cersosimo, M., Del Prete, V., & Garcia-Moruno, E. (2006). Production of biogenic amines by lactic acid bacteria: Screening by PCR, thin layer chromatography, and HPLC of strains isolated from wine and must. Journal of Food Protection, 69, 391–396.

    Google Scholar 

  • Costello, P. J., & Henschke, P. A. (2002). Mousy off-flavour of wine: Precursors and biosynthesis of the causative N-heterocycles 2-ethyltetrahydropyradine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. Journal of Agricultural and Food Chemistry, 50, 7079–7087.

    Article  CAS  Google Scholar 

  • Costello, P., Lee, T. H., & Henschke, P. A. (2001). Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. Australian Journal of Grape and Wine Research, 7, 160–167.

    Article  Google Scholar 

  • Coton, E., Rollan, G., Bertrand, A., & Lonvaud-Funel, A. (1998). Histamine producing lactic acid bacteria in wines: Early detection, frequency, and distribution. American Journal of Enology and Viticulture, 49, 199–204.

    CAS  Google Scholar 

  • Coton, E., Torlois, S., Bertrand, A., & Lonvaud-Funel, A. (1999). Biogenic amines and wine lactic acid bacteria. Bulletin of the International Organisation of Vine and Wine (OIV), 815–816, 22–35.

    Google Scholar 

  • Couto, J. A., & Hogg, T. A. (1994). Diversity of ethanol-tolerant lactobacilli isolated from Douro fortified wine: Clustering and identification by numerical analysis of electrophoretic protein profiles. The Journal of Applied Bacteriology, 76, 487–491.

    CAS  Google Scholar 

  • Couto, J. A., Campos, F. M., Figueiredo, A. R., & Hogg, T. A. (2006). Ability of lactic acid bacteria to produce volatile phenols. American Journal of Enology and Viticulture, 57, 166–171.

    CAS  Google Scholar 

  • Cox, D. J. (1991). Studies on the energetics and growth benefits of malolactic fermentation in lactic acid bacteria. PhD thesis. Cornell University, Ithaca, New York.

  • Cox, D. J., & Henick-Kling, T. (1989). Chemiosmotic energy from malolactic fermentation. The Journal of Applied Bacteriology, 171, 5750–5752.

    CAS  Google Scholar 

  • Crowell, E. A., & Guymon, I. F. (1975). Wine constituents arising from sorbic acid addition and identification of 2-ethoxyhexa-3, 5-diene as a source of geranium-like off-odor. American Journal of Enology and Viticulture, 26, 97–102.

    CAS  Google Scholar 

  • Curiel, J. A., Muñoz, R., & Lópezde Felip, F. (2010). pH and dose-dependent effects of quercetin on the fermentation capacity of Lactobacillus plantarum. Food Science and Technology, 43, 926–933.

    CAS  Google Scholar 

  • Curk, M.-C., Hubert, J.-C., & Bringel, F. (1996). Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. International Journal of Systematic Bacteriology, 46, 595–598.

    Article  CAS  Google Scholar 

  • Daeschel, M. A., Jung, D.-S., & Watson, B. T. (1991). Controlling wine malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Applied and Environmental Microbiology, 57, 601–603.

    CAS  Google Scholar 

  • Davis, C. R., Wibowo, D., Eschenbruch, R., Lee, T. H., & Fleet, G. H. (1985). Practical implications of malolactic fermentation: A review. American Journal of Enology and Viticulture, 36, 290–301.

    CAS  Google Scholar 

  • Davis, C. R., Wibowo, D. J., Lee, T. H., & Fleet, G. H. (1986a). Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Applied and Environmental Microbiology, 5, 539–545.

    Google Scholar 

  • Davis, C. R., Wibowo, D. J., Lee, T. H., & Fleet, G. H. (1986b). Growth and metabolism of lactic acid bacteria during fermentation of some Australian wines. Food Technology in Australia, 38, 35–40.

    CAS  Google Scholar 

  • Davis, C. R., Wibowo, D., Fleet, G. H., & Lee, T. H. (1988). Properties of wine lactic acid bacteria: Their potential enological significance. American Journal of Enology and Viticulture, 39, 137–142.

    CAS  Google Scholar 

  • De las Rivas, B., Delas Rivas, B., Marcobal, Á., Carrascose, A. V., & Muñoz, R. (2006). PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. Journal of Food Protection, 69, 2509–2514.

    Google Scholar 

  • De las Rivas, B., Rodríguez, H., Curiel, J. A., Landete, J. M., & Munoz, R. (2009). Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. Journal of Agricultural and Food Chemistry, 57, 490–494.

    Article  CAS  Google Scholar 

  • Delfini, C., & Morsiani, M. G. (1992). Resistance to sulfur dioxide of malolactic strains of Leuconostoc oenos and Lactobacillus sp. isolated from wines. Sciences des Aliments, 12, 493–511.

    CAS  Google Scholar 

  • Derré, I., Rapoport, G., & Msadek, T. (1999). CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Molecular Microbiology, 31, 117–132.

    Article  Google Scholar 

  • Dias, L., Pereira-da-Silva, S., Tavares, M., Malfeito-Ferreira, M., & Loureiro, V. (2003). Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiology, 20, 377–384.

    Article  CAS  Google Scholar 

  • Dick, K. J., Molan, P. C., & Eschenbruch, R. (1992). The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis, 31, 105–116.

    CAS  Google Scholar 

  • Dicks, L. M. T., & Endo, A. (2009). Taxonomic status of lactic acid bacteria in wine and key characteristics to differentiate species. South African Journal of Enology and Viticulture, 30, 72–90.

    Google Scholar 

  • Dittrich, H. H. (1977). Mikrobiologie des Weines. Handbuch der Getränketechnologie. Stuttgart: Ulmer Verlag.

    Google Scholar 

  • Donnelly, D. M. (1977). Airborne microbial contamination in a winery bottling room. American Journal of Enology and Viticulture, 28, 176–181.

    Google Scholar 

  • Dott, W., Heinzel, M., & Trüper, H. G. (1976). Sulphite formation by wine yeast. Archives of Mikrobiologie, 107, 289–292.

    Article  CAS  Google Scholar 

  • Douglas, H. C., & Cruess, W. V. (1936). A Lactobacillus from California wine: Lactobacillus hilgardii. Food Research, 1, 113–119.

    Google Scholar 

  • Downing, L. (2003). Characterisation of biogenic amine-encoding genes in lactic acid bacteria isolated from South African wine. MSc Thesis. Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa.

  • Drici-Cachon, A., Guzzo, J., Cavin, F., & Diviès, C. (1996). Acid tolerance in Leuconostoc oenos. Isolation and characterisation of an acid resistant mutant. Applied Microbiology and Biotechnology, 44, 785–789.

    CAS  Google Scholar 

  • Du Plessis, L. D. W., & Van Zyl, J. A. (1963). The microbiology of South African winemaking: Part IV. The taxonomy and the incidence of lactic acid bacteria from dry wines. South African Journal of Agricultural Science, 6, 261–273.

    Google Scholar 

  • Du Plessis, H. W., Dicks, L. M. T., Pretorius, I. S., Lambrechts, M. G., & Du Toit, M. (2004). Identification of lactic acid bacteria isolated from South African brandy base wines. International Journal of Food Microbiology, 91, 19–29.

    Article  CAS  Google Scholar 

  • Du Toit, C. (2002). The evaluation of bacteriocins and enzymes for biopreservation of wine. Master Thesis. Institute for Wine Biotechnology, Stellenbosch University, South Africa.

  • Du Toit, M., & Pretorius, I. S. (2000). Microbial spoilage and preservation of wine: Using weapons from nature’s own arsenal—A review. South African Journal of Enology and Viticulture, 21, 74–96 (special issue).

    Google Scholar 

  • Dueñas, M., Irastorza, A., Fernadez, C., & Bilbao, A. (1995). Heterofermentative lactobacilli causing ropiness in Basque Country ciders. Journal of Food Protection, 59, 76–80.

    Google Scholar 

  • Edinger, W. D., & Splittstoesser, D. F. (1986a). Sorbate tolerance by lactic acid bacteria associated with grapes and wine. Journal of Food Science, 51, 1077–1078.

    Article  CAS  Google Scholar 

  • Edinger, W. D., & Splittstoesser, D. F. (1986b). Production by lactic acid bacteria of sorbic alcohol, the precursor of the geranium odor compound. American Journal of Enology and Viticulture, 37, 34–38.

    CAS  Google Scholar 

  • Edwards, C. G., & Beelman, R. B. (1987). Inhibition of malolactic bacterium, Leuconostoc oenos (PSU-1), by decanoic acid and subsequent removal of the inhibition by yeast ghosts. American Journal of Enology and Viticulture, 38, 239–242.

    CAS  Google Scholar 

  • Edwards, C. G., & Jensen, K. A. (1992). Occurrence and characterisation of lactic acid bacteria from Washington State Wines: Pediococcus spp. American Journal of Enology and Viticulture, 43, 233–238.

    Google Scholar 

  • Edwards, C. G., Haag, K. M., Collins, M. D., Hutson, R. A., & Huang, Y. C. (1998). Lactobacillus kunkeei sp. nov.: A spoilage organism associated with grape juice fermentations. Journal of Applied Microbiology, 84, 698–702.

    Article  CAS  Google Scholar 

  • Edwards, C. G., Collins, M. D., Lawson, P. A., & Rodriguez, A. V. (2000). Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. International Journal of Systematic and Evolutionary Microbiology, 50, 699–702.

    Article  Google Scholar 

  • Eliseeva, G. S., Nagornaia, S. S., Zherebilo, O. E., Podgorski, V. S., & Ignatova, E. A. (2001). Biological deacidification of wines using lactic-acid bacteria and yeasts [in Russian]. Prikladnaya Biokhimiya i Mikrobiologiy, 37, 487–493.

    CAS  Google Scholar 

  • Eschenbruch, R. (1974). Sulfite and sulfide formation during winemaking—A review. American Journal of Enology and Viticulture, 25, 157–161.

    CAS  Google Scholar 

  • Escot, S., Feuillat, M., Dulau, L., & Charpentier, C. (2001). Release of polysaccharides on colour stability and wine astringency. Australian Journal of Journal of Grape and Wine Research, 7, 153–159.

    Article  Google Scholar 

  • Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology & Medicine, 11, 81–128.

    Article  CAS  Google Scholar 

  • Farías, M. E., Rollán, G. C., & Manca de Nadra, M. C. (1996). Influence of nutritional factors on the protease production by Leuconostoc oenos from wine. The Journal of Applied Bacteriology, 81, 398–402.

    Google Scholar 

  • Ferchichi, M., Hemme, D., Nardi, M., & Pamboukdjan, N. (1985). Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. Journal of General Microbiology, 131, 715–723.

    CAS  Google Scholar 

  • Fernandes, J. O., & Ferreira, M. A. (2000). Combined ion-pair extraction and gas chromatography-mass spectrometry for the simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. Journal of Chromatography A, 886, 183–195.

    Article  CAS  Google Scholar 

  • Figueiredo, A. R., Campos, F., de Freitas, V., Hogg, T., & Couto, J. A. (2008). Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiology, 25, 105–112.

    Article  CAS  Google Scholar 

  • Fleet, G. H., Lafon-Lafourcade, S., & Ribereau-Gayon, P. (1984). Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Applied and Environmental Microbiology, 48, 1034–1038.

    CAS  Google Scholar 

  • Fugelsang, K. C., & Edwards, C. G. (1997). In K. C. Fugelsang & C. G. Edwards (Eds.), Wine microbiology: Practical applications and procedures. New York: Springer.

    Google Scholar 

  • Fumi, M. D., Krieger-Weber, S., Déléris-Bou, M., Silva, A., & du Toit, M. (2010). A new generation of malolactic starter cultures for high pH wines. Proceedings International IVIF Congress 2010, WB3 Microorganisms—Malolactic-Fermentation.

  • G-Alegría, E., López, I., Ruiz, J. I., Sáenz, J., Fernández, E., Zarazaga, M., et al. (2004). High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters, 230, 53–61.

    Article  CAS  Google Scholar 

  • Gardini, F., Zaccarelli, A., Belletti, N., Faustini, F., Cavazza, A., Maruscelli, M., et al. (2005). Factors influencing biogenic amine production by a strain of Oenococcus oeni in a model system. Food Control, 16, 609–616.

    Article  CAS  Google Scholar 

  • Garvie, E. I. (1967a). The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. Journal of General Microbiology, 48, 439–447.

    CAS  Google Scholar 

  • Garvie, E. I. (1967b). Leuconostoc oenos sp. nov. Journal of General Microbiology, 48, 431–438.

    CAS  Google Scholar 

  • Garvie, E. I. (1979). Proposal of neotype strains for Leuconostoc mesenteroides (Tsenkovskii) van Tieghem, Leuconostoc dextranicum (Beijernick) Hucker and Pederson and Leuconostoc cremoris (Knudsen and Sørensen) Garvie. International Journal of Systematic Bacteriology, 29, 149–152.

    Article  Google Scholar 

  • Garvie, E. I. (1983). Leuconostoc mesenteroides subsp. cremoris (Kudsen and Sørensen) comb. nov. and Leuconostoc mesenteroides subsp. dextranicum (Beijernick) comb. nov. International Journal of Systematic Bacteriology, 33, 118.

    Article  Google Scholar 

  • Gerbaux, V., Vincent, B., & Bertrand, A. (2002). Influence of maceration temperature and enzymes on the content of volatile phenols in Pinot noir wines. American Journal of Enology and Viticulture, 53, 131–137.

    CAS  Google Scholar 

  • Glória, M. B. A., Watson, B. T., Simon-Sarkadi, L., & Daeschel, M. A. (1998). A survey of biogenic amines in Oregon Pinot noir and Cabernet Sauvignon wines. American Journal of Enology and Viticulture, 49, 279–282.

    Google Scholar 

  • Grimaldi, A., Bartowsky, E., & Jiranek, V. (2005). Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology. Journal of Applied Microbiology, 99, 1061–1069.

    Article  CAS  Google Scholar 

  • Guerrini, S., Mangani, S., Granchi, L., & Vincenzini, M. (2002). Biogenic amine production by Oenococcus oeni. Current Microbiology, 44, 374–378.

    Article  CAS  Google Scholar 

  • Guerzoni, M. E., Sinigaglia, M., Gardini, F., Ferruzzi, M., & Torriani, S. (1995). Effects of pH, temperature, ethanol, and malate concentration on Lactobacillus plantarum and Leuconostoc oenos: Modelling of the malolactic activity. American Journal of Enology and Viticulture, 3, 368–374.

    Google Scholar 

  • Guzzo, J., & Desroche, N. (2009). Physical and chemical stress factors in lactic acid bacteria. In H. König, F. Fröhlich, & G. Unden (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 293–306). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Henick-Kling, T. (1986). Growth and metabolism of Leuconostoc oenos and Lactobacillus plantarum in wine. PhD thesis. University of Adelaide, South Australia.

  • Henick-Kling, T. (1988). Yeast and bacteria control in winemaking. In H. F. Linskens & J. F. Jackson (Eds.), Modern methods of plant analysis. New series, Volume 6. Wine analysis (pp. 276–315). Berlin: Springer.

    Google Scholar 

  • Henick-Kling, T. (1993). Malolactic fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 289–326). Chur: Harwood Academic.

    Google Scholar 

  • Henick-Kling, T., & Park, Y. H. (1994). Considerations for the use of yeast and starter cultures: SO2 and timing of inoculation. American Journal of Enology and Viticulture, 45, 464–469.

    Google Scholar 

  • Henick-Kling, T., Acree, T., Gavitt, B., Krieger, S. A., & Laurent, M. H. (1993). Sensory aspects of malolactic fermentation. In Proceedings of the 8th Australian Wine Industry Technical Conference (pp. 148–152). Adelaide: Winetitles.

  • Hernández, T., Estrella, I., Pérez-Gordo, M., Alegría, E. G., Tenorio, C., Ruiz-Larrrea, F., et al. (2007). Contribution of malolactic fermentation by Oenococcus oeni and Lactobacillus plantarum to the changes in the nonanthocyanin polyphenolic composition of red wine. Journal of Agricultural and Food Chemistry, 55, 5260–5266.

    Article  CAS  Google Scholar 

  • Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., & Nes, I. F. (2001). Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology, 147, 643–651.

    CAS  Google Scholar 

  • Hornsey, I. (2007). Lactic acid bacteria and malo-lactic fermentation. In I. Hornsey (Ed.), The chemistry and biology of winemaking (pp. 203–240). Cambridge: RSC.

    Google Scholar 

  • Hutkins, R. W., & Nannen, N. (1993). pH homeostasis in lactic acid bacteria. Journal of Dairy Science, 76, 2354–2365.

    Article  CAS  Google Scholar 

  • Izquierdo Cañas, P. M., García Romero, E., Gómez Alonso, S., Fernández González, M., & Palop Herreros, M. L. L. (2007). Amino acids and biogenic amines during spontaneous malolactic fermentation in Tempranillo red wines. Journal of Food Composition and Analysis, 21, 731–735.

    Article  CAS  Google Scholar 

  • Izquierdo, P. M., Ruiz, P., Seseña, S., & Palop, M. L. (2009). Ecological study of lactic acid microbiota isolated from Tempranillo wines of Castilla-La Mancha. Journal of Bioscence and Bioengineering, 108, 220–224.

    Article  CAS  Google Scholar 

  • Jackson, R. S. (2008). Origin and growth of lactic acid bacteria. In R. S. Jackson (Ed.), Wine science: Principles and applications (p. 394). California: Academic.

    Google Scholar 

  • Jones, G. V. (2009). Climate variability and change: Influences on viticulture and wine production. In: Proceedings 4th International Conferences of the South African Society for Enology and Viticulture, 28–30 July, Cape Town, South Africa.

  • Julien, A., Roustan, J. L., Dulau, L., & Sablayrolles, J. M. (2000). Characterization of enological yeast strains: Evaluation of their nutrients requirements in nitrogen and oxygen. American Journal of Enology and Viticulture, 51, 302.

    Google Scholar 

  • King, S. W., & Beelman, R. B. (1986). Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model grape juice/wine system. American Journal of Enology and Viticulture, 37, 53–60.

    CAS  Google Scholar 

  • Knoll, C., Divol, B., & Du Toit, M. (2008). Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiology, 25, 983–991.

    Article  CAS  Google Scholar 

  • Krieger, S. A. (1989). Optimierung des biologischen Säureabbaus in Wein mit Starterkulturen. PhD thesis. University of Hohenheim, Germany.

  • Krieling, S. J. (2003). An investigation into lactic acid bacteria as a possible cause of bitterness in wine. MSc Thesis. Institute for Wine Biotechnology, Stellenbosch University, South Africa.

  • Kunkee, R. E. (1967). Malolactic fermentation. Advances in Applied Microbiology, 9, 235–279.

    Article  CAS  Google Scholar 

  • Lafon-Lafourcade, S. (1983). In H. J. Rehm & G. Redd (Eds.), Wine and brandy in biotechnology (pp. 81–163). Weinheim: Verlag Chemie.

    Google Scholar 

  • Lafon-Lafourcade, S., Carre, E., & Ribéreau-Gayon, P. (1983). Occurrence of lactic acid bacteria during different stages of the vinification and conservation of wines. Applied and Environmental Microbiology, 46, 874–880.

    CAS  Google Scholar 

  • Landaud, S., Helinck, S., & Bonnarme, P. (2008). Formation of volatile sulphur compounds and metabolism of methionine and other sulphur compounds in fermented food. Applied Microbiology and Biotechnology, 77, 1191–1205.

    Article  CAS  Google Scholar 

  • Landete, J. M., Ferrer, S., & Pardo, I. (2005a). Which lactic acid bacteria are responsible for histamine production in wine? Journal of Applied Microbiology, 99, 580–586.

    Article  CAS  Google Scholar 

  • Landete, J. M., Ferrer, S., Polo, L., & Pardo, I. (2005b). Biogenic amines in wines from three Spanish regions. Journal of Agricultural and Food Chemistry, 53, 1119–1124.

    Article  CAS  Google Scholar 

  • Landete, J. M., Ferrer, S., & Pardo, I. (2007a). Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 18, 1569–1574.

    Article  CAS  Google Scholar 

  • Landete, J. M., Rodriguéz, H., De las Rivas, B., & Muñdoz, R. (2007b). High-added-value antioxidants obtained from the degradation of wine phenolics by Lactobacillus plantarum. Journal of Food Protection, 70, 2670–2675.

    CAS  Google Scholar 

  • Landete, J. M., Pardo, I., & Ferrer, S. (2008). Regulation of hdc expression and HDC activity by enological factors in lactic acid bacteria. Journal of Applied Microbiology, 105, 1544–1551.

    Article  CAS  Google Scholar 

  • Le Jeune, C., Lonvaud-Funel, A., ten Brink, B., Hofstra, H., & van der Vossen, J. M. B. M. (1995). Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. The Journal of Applied Bacteriology, 78, 316–326.

    Google Scholar 

  • Lee, J.-E., Hwang, G.-S., Lee, C.-H., & Hong, Y.-S. (2009). Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria. Journal of Agricultural and Food Chemistry, 57, 10772–10783.

    Article  CAS  Google Scholar 

  • Liu, S.-Q. (2002). Malolactic fermentation in wine—Beyond deacidification. Journal of Applied Microbiology, 92, 589–601.

    Article  CAS  Google Scholar 

  • Liu, S.-Q., & Pilone, G. J. (2000). An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. International Journal of Food Science & Technology, 35, 49–61.

    Article  CAS  Google Scholar 

  • Liu, S.-Q., Pritchard, G. G., Hardman, M. J., & Pilone, G. J. (1994). Citrulline production and ethyl carbamate (urethane) precursor formation from arginine degradation by wine lactic acid bacteria Leuconostoc oenos and Lactobacillus buchneri. American Journal of Enology and Viticulture, 45, 235–242.

    CAS  Google Scholar 

  • Liu, S.-Q., Pritchard, G. C., Hardman, M. J., & Pilone, G. J. (1995). Occurrence of arginine deiminase pathway enzymes in arginine catabolism in wine lactic acid bacteria. Applied and Environmental Microbiology, 61, 310–316.

    CAS  Google Scholar 

  • Liu, M., Nauta, A., Francke, C., & Siezen, R. J. (2008). Comparative genomics of enzymes in flavour-forming pathways from amino acids in lactic acid bacteria. Applied and Environmental Microbiology, 74, 4590–4600.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A. (1986). Recherches sur les bactéries lactiques du vin. Fonctions métaboliques, croissance, génétique plasmidique. Thesis, University of Bordeaux, France.

  • Lonvaud-Funel, A. (1995). Microbiology of the malolactic fermentation: Molecular aspects. FEMS Microbiology Letters, 126, 209–214.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek, 76, 317–331.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A. (2001a). Interactions between lactic acid bacteria of wine and phenolic compounds. In: Nutritional aspects II, synergy between yeast and bacteria, pp. 27–32. Lallemand Technical Meeting, Perugia, Italy, 27–30 April 2001.

  • Lonvaud-Funel, A. (2001b). Biogenic amines in wine: Role of lactic acid bacteria. FEMS Microbiology Letters, 199, 9–13.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A., & Joyeux, A. (1994). Histamine production by wine lactic acid bacteria: Isolation of a histamine-producing strain of Leuconostoc oenos. The Journal of Applied Bacteriology, 77, 401–407.

    CAS  Google Scholar 

  • Lonvaud-Funel, A., & Strasser de Saad, A. M. (1982). Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Applied and Environmental Microbiology, 43, 357–361.

    CAS  Google Scholar 

  • Lonvaud-Funel, A., Joyeux, A., & Desens, C. (1988). Inhibition of malolactic fermentation of wines by products of yeast metabolism. Journal of the Science of Food and Agriculture, 44, 183–191.

    Article  CAS  Google Scholar 

  • Lonvaud-Funel, A., Joyeux, A., & Ledoux, O. (1991). Specific enumeration of lactic acid bacteria in fermenting grape must and wine by colony hybridization with non-isotopic DNA probes. The Journal of Applied Bacteriology, 71, 501–508.

    Google Scholar 

  • López, I., Tenorio, C., Zarazaga, M., Dizy, M., Torres, C., & Ruiz-Larrea, F. (2007). Evidence of mixed wild populations of Oenococus oeni strains during wine spontaneous malolactic fermentation. European Food Research and Technology, 226, 215–223.

    Article  CAS  Google Scholar 

  • Lucas, P., & Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211, 85–89.

    Article  CAS  Google Scholar 

  • Lucas, P., Landete, J., Coton, M., Coton, E., & Lonvaud-Funel, A. (2003). The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: Characterization and conservation in tyramine-producing bacteria. FEMS Microbiology Letters, 229, 65–71.

    Article  CAS  Google Scholar 

  • Lucas, P. M., Claisse, O., & Lonvaud-Funel, A. (2008). High frequency of histamine-producing bacteria in enological environment and instability of the phenotype. Applied and Environmental Microbiology, 74, 811–817.

    Article  CAS  Google Scholar 

  • Manca de Nadra, M. C., Farías, M. E., Moreno-Arribas, M. V., Pueyo, E., & Polo, M. C. (1997). Proteolytic activity of Leuconostoc oenos: Effect on proteins and polypeptides from white wine. FEMS Microbiology Letters, 150, 135–139.

    Article  CAS  Google Scholar 

  • Manca de Nadra, M. C., Farías, M. E., Moreno-Arribas, V., Pueyo, E., & Polo, M. C. (1999). A proteolytic effect of Oenococcus oeni on the nitrogenous macromolecular fraction of red wine. FEMS Microbiology Letters, 174, 41–47.

    Article  Google Scholar 

  • Manca de Nadra, M. C., Farías, M. E., Pueyo, E., & Polo, M. C. (2005). Protease activity of Oenococcus oeni viable cells on red wine nitrogenous macromolecular fraction in presence of SO2 and ethanol. Food Control, 16, 851–854.

    Article  CAS  Google Scholar 

  • Mañes-Lázaro, R., Ferrer, S., Rodas, A. M., Urdiain, M., & Pardo, I. (2008a). Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must. International Journal of Systematic and Evolutionary Microbiology, 58, 2699–2703.

    Article  CAS  Google Scholar 

  • Mañes-Lázaro, R., Ferrer, S., Rosselló-Mora, R., & Pardo, I. (2008b). Lactobacillus uvarum sp. nov.—A new lactic acid bacterium isolated from Spanish Bobal grape must. Systematic and Applied Microbiology, 31, 425–433.

    Article  CAS  Google Scholar 

  • Mañes-Lázaro, R., Ferrer, S., Rosselló-Mora, R., & Pardo, I. (2009). Lactobacillus oeni sp. nov., from wine. International Journal of Systematic and Evolutionary Microbiology, 59, 2010–2014.

    Article  CAS  Google Scholar 

  • Manfroi, L., Silva, P. H. A., Rizzon, L. A., Sabaini, P. S., & Glória, M. B. A. (2009). Influence of alcoholic and malolactic starter cultures on bioactive amines in Merlot wines. Food Chemistry, 116, 208–213.

    Article  CAS  Google Scholar 

  • Marcobal, Á., De Las Rivas, B., Moreno-Arribas, M. V., & Muñoz, R. (2004). Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83. FEMS Microbiology Letters, 239, 213–220.

    Article  CAS  Google Scholar 

  • Marcobal, Á., De Las Rivas, B., Moreno-Arribas, M. V., & Muñoz, R. (2005). Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine producing lactic acid bacteria in foods. Journal of Food Protection, 68, 874–878.

    CAS  Google Scholar 

  • Marcobal, Á., Martín-Álvarez, P. J., Polo, C., Muñoz, R., & Moreno-Arribas, M. V. (2006). Formation of biogenic amines throughout the industrial manufacture of red wine. Journal of Food Protection, 69, 397–404.

    CAS  Google Scholar 

  • Margalit, Y. (1997). In J. D. Crum (Ed.), Concepts in wine chemistry. San Francisco: Wine Appreciation Guild.

    Google Scholar 

  • Margalith, P. Z. (1981). Flavour microbiology. Springfield: Charles C. Thomas.

    Google Scholar 

  • Martín-Álvarez, P. J., Marcobal, Á., Polo, C., & Moreno-Arribas, M. V. (2006). Influence of technological practices on biogenic amine contents in red wines. European Food Research and Technology, 222, 420–424.

    Article  CAS  Google Scholar 

  • Martineau, B., & Henick-Kling, T. (1995). Formation and degradation of diacetyl in wine during alcoholic fermentation with Saccharomyces cerevisiae strain EC1118 and malolactic fermentation with Leuconostoc oenos strain MCW. American Journal of Enology and Viticulture, 46, 442–448.

    CAS  Google Scholar 

  • Martineau, B., & Henick-Kling, T. (1996). Effect of malic acid on citric acid metabolism in Leuconostoc oenos. American Journal of Enology and Viticulture, 47, 229.

    Google Scholar 

  • Martineau, B., Henick-Kling, T., & Acree, T. (1995a). Reassessment of the influence of malolactic fermentation on the concentration of diacetyl in wines. American Journal of Enology and Viticulture, 46, 385–388.

    CAS  Google Scholar 

  • Martineau, B., Acree, T. E., & Henick-Kling, T. (1995b). Effect of wine type on the detection threshold for diacetyl. Food Research International, 28, 139–143.

    Article  CAS  Google Scholar 

  • Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P., & Jiranek, V. (2004). Lactic acid bacteria as a potential source of enzymes for use in vinification. Applied and Environmental Microbiology, 70, 5715–5731.

    Article  CAS  Google Scholar 

  • Matthews, A., Grbin, P. R., & Jiranek, V. (2007). Biochemical characterisation of the esterase activities of wine lactic acid bacteria. Applied Microbiology and Biotechnology, 77, 329–337.

    Article  CAS  Google Scholar 

  • Mayer, K., & Vetsch, U. (1973). pH und biologischer Säureabbau in Wein. Schweizer Zeitschrift für Obst- und Weinbau, 109, 635–639.

    CAS  Google Scholar 

  • Mazzoli, R., Lamberti, C., Coisson, J. D., Purrotti, M., Arlorio, M., Guiffrida, M. G., et al. (2009). Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from Italian red wine. Amino Acids, 36, 81–89.

    Article  CAS  Google Scholar 

  • McDonald, L. C., Fleming, H. P., & Hassan, H. M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology, 56, 2120–2124.

    CAS  Google Scholar 

  • Mira de Orduña, R., Liu, S.-Q., Patchet, M. L., & Pilone, G. J. (2000). Kinetics of the arginine metabolism of malolactic wine lactic acid bacteria Lactobacillus buchneri CUC-3 and Oenococcus oeni LO111. Journal of Applied Microbiology, 89, 547–552.

    Article  Google Scholar 

  • Mira de Orduña, R., Patchett, M. L., Liu, S.-Q., & Pilone, G. J. (2001). Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Applied and Environmental Microbiology, 67, 1657–1662.

    Article  Google Scholar 

  • Monagas, M., Bartolomé, B., & Gómez-Cordovés, C. (2005). Updated knowledge about the presence of phenolic compounds in wine. Critical Reviews in Food Science and Nutrition, 45, 85–118.

    Article  CAS  Google Scholar 

  • Monnet, V., Le Bars, D., & Gripon, J. C. (1987). Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO 763. The Journal of Dairy Research, 54, 247–255.

    Article  CAS  Google Scholar 

  • Moreira, N., Mendes, F., Pereira, O., Guedes de Pinho, P., Hogg, T., & Vasconcelos, I. (2002). Volatile sulphur compounds in wine related to yeast metabolism and nitrogen composition of grape musts. Analytica Chimica Acta, 458, 157–167.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, V., & Lonvaud-Funel, A. (1999). Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiology Letters, 180, 55–60.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, M. V., & Polo, M. C. (2008). Occurrence of lactic acid bacteria and biogenic amines in biologically aged wines. Food Microbiology, 25, 875–881.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, V., Torlois, S., Joyeux, A., Bertrand, A., & Lonvaud-Funel, A. (2000). Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. Journal of Applied Microbiology, 88, 584–593.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, V., Polo, M. C., Jorganes, F., & Muñoz, R. (2003). Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 84, 117–123.

    Article  CAS  Google Scholar 

  • Morenzoni, R. (2006). Introduction. In R. Morenzoni (Ed.), Malolactic fermentation in wine—Understanding the science and the practice (pp. 2.1–2.2). Montréal: Lallemand.

    Google Scholar 

  • Mtshali, P. S., Divol, B. T., Van Rensburg, P., & Du Toit, M. (2010). Genetic screening of wine-related enzymes in Lactobacillus species isolated from South African wines. Journal of Applied Microbiology, 108, 1389–1397.

    Article  CAS  Google Scholar 

  • Navarro, L., Zarazaga, M., Saenz, J. S., Ruiz-Larrea, F., & Torres, C. (2000). Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. Journal of Applied Microbiology, 88, 44–51.

    Article  CAS  Google Scholar 

  • Nehme, N., Mathieu, F., & Taillandier, P. (2010). Impact of the co-culture of Saccharomyces cerevisiaeOenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiology, 27, 150–157.

    Article  CAS  Google Scholar 

  • Nelson, L. (2008). The production of volatile phenols by wine microorganisms. Master Thesis. Department of Viticulture and Oenology, Stellenbosch University, South Africa.

  • Nielsen, J. C., & Richelieu, M. (1999). Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Applied and Environmental Microbiology, 65, 740–745.

    CAS  Google Scholar 

  • Nieuwoudt, H. H., Prior, B. A., Pretorius, I. S., & Bauer, F. F. (2002). Glycerol in South African table wines: An assessment of its relationship to wine quality. South African Journal of Enology and Viticulture, 23, 22–30.

    CAS  Google Scholar 

  • Nonomura, H., Yamazaki, T., & Ohara, Y. (1967). Die Äpfelsäure-Milchsäure-Bakterien, welche aus französischen und spanischen Weinen isoliert wurden. Mitteilungen Klosterneuburg, 17A, 345–351.

    Google Scholar 

  • Oelofse, A., Pretorius, I. S., & du Toit, M. (2008). Significance of Brettanomyces and Dekkera during winemaking: A synoptic review. South African Journal of Enology and Viticulture, 29, 128–144.

    CAS  Google Scholar 

  • Oelofse, A., Lonvaud-Funel, A., & du Toit, M. (2009). Molecular identification of Brettanomyces bruxellensis strains isolated from red wines and volatile phenol production. Food Microbiology, 26, 377–385.

    Article  CAS  Google Scholar 

  • Olsen, E. B., Russel, J. B., & Henick-Kling, T. (1991). Electrogenic L-malate transport in Lactobacillus plantarum, a basis of energy production from malolactic fermentation. Journal of Bacteriology, 173, 6199–6206.

    CAS  Google Scholar 

  • Osborne, J. P., & Charles, G. E. (2007). Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. International Journal of Food Microbiology, 118, 27–34.

    Article  CAS  Google Scholar 

  • Osborne, J. P., Mira de Orduña, R., Pilone, G. J., & Liu, S.-Q. (2000). Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiology Letters, 191, 51–55.

    Article  CAS  Google Scholar 

  • Osborne, J. P., Dubé Morneau, A., & Mira de Orduña, R. (2006). Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine. Journal of Applied Microbiology, 101, 474–479.

    Article  CAS  Google Scholar 

  • Palacios, A. (2006). Organoleptic defects caused by uncontrolled malolactic fermentation. In R. Morenzoni (Ed.), Malolactic fermentation in wine—Understanding the science and the practice (pp. 7.1–7.7). Montréal: Lallemand.

    Google Scholar 

  • Pasteris, S. E., & Strasser de Saad, A. M. (1997). Enzymatic activities involved in glycerol utilization by Pediococcus pentosaceus from Argentinean wine. Microbiologie, Aliments, Nutrition, 15, 139–145.

    CAS  Google Scholar 

  • Pasteris, S. E., & Strasser de Saad, A. M. (2005). Aerobic glycerol catabolism by Pediococcus pentosaceus from wine. Food Microbiology, 22, 399–407.

    Article  CAS  Google Scholar 

  • Pasteris, S. E., & Strasser de Saad, A. M. (2009). Sugar-glycerol cofermentations by Lactobacillus hilgardii isolated from wine. Journal of Agricultural and Food Chemistry, 57, 3853–3858.

    Article  CAS  Google Scholar 

  • Peynaud, E., & Domercq, S. (1967). Etude de quelques coques homolactiques isolés de vins. Revue des Fermentations et des Industries Alimentaires, 22, 133–140.

    Google Scholar 

  • Peynaud, E., & Domercq, S. (1968). Étude de quatre cents souches de coques hétérolactiques isolés de vins. Annales de l’Institut Pasteur de Lille, 19, 159–170.

    CAS  Google Scholar 

  • Peynaud, E., & Sapis-Domercq, S. (1970). Etude de deux cent cinquante souches de bacilles hétérolactiques isolés de vins. Archives of Microbiology, 70, 348–360.

    CAS  Google Scholar 

  • Phadtare, S., Tyagi, S., Inouye, M., & Severinov, K. (2002). Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. The Journal of Biological Chemistry, 277, 46706–46711.

    Article  CAS  Google Scholar 

  • Pilone, G. J., & Kunkee, R. E. (1976). Stimulatory effect of malo-lactic fermentation on the growth rate of Leuconostoc oenos. Applied and Environmental Microbiology, 32, 405–408.

    CAS  Google Scholar 

  • Plumed-Ferrer, C., Koistinen, K. M., Tolonen, T. L., Lehesranta, S. J., Kärenlampi, S. O., Mäkimattila, E., et al. (2008). Comparative study of sugar fermentations and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Applied and Environmental Microbiology, 74, 5349–5358.

    Article  CAS  Google Scholar 

  • Powell, C., Van Zandycke, S., & Degré, R. (2006). The microbiology of malolactic fermentation. In R. Morenzoni (Ed.), Malolactic fermentation in wine—Understanding the science and the practice (pp. 5.1–5.11). Montréal: Lallemand.

    Google Scholar 

  • Pozo-Bayón, M. Á., Pardo, I., Ferrer, S., & Moreno-Arribas, M. V. (2009). Molecular approaches for the identification and characterisation of oenological lactic acid bacteria. African Journal of Biotechnology, 8, 3995–4001.

    Google Scholar 

  • Prahl, C. (1988). Method of inducing the decarboxylation of malic acid in must or fruit juice. European patent filed 24.01.1989, priority 25.01.1988, International application number PCT/DK89/00009.

  • Prahl, C. (1989). La décarboxylation de l’acide L-malique dans le moût par l’ensemencement de lactobacilles homofermentaires. Revue des Œnologues, 54, 13–17.

    Google Scholar 

  • Pressman, D., & Lucas, H. J. (1942). Hydration of unsaturated compounds. XI. Acrolein and acrylic acid. Journal of the American Chemical Society, 64, 1953–1957.

    Article  CAS  Google Scholar 

  • Pripis-Nicolau, L., De Revel, G., Bertrand, A., & Lonvaud-Funel, A. (2004). Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. Journal of Applied Microbiology, 96, 1176–1184.

    Article  CAS  Google Scholar 

  • Radler, F. (1966). Die mikrobiologischen grundlagen des säureabbaus in wein. Zentralblatt für Bakteriologie, Parasitenkunde, 120, 237–287.

    CAS  Google Scholar 

  • Radler, F. (1990a). Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. American Journal of Enology and Viticulture, 41, 1–6.

    CAS  Google Scholar 

  • Radler, F. (1990b). Possible use of nisin in winemaking. II. Experiments to control lactic acid bacteria in the production of wine. American Journal of Enology and Viticulture, 41, 7–11.

    CAS  Google Scholar 

  • Radler, F., & Yannissis, C. (1972). Weinsäureabbau bei Milchsäurebakterien. Archives of Microbiology, 82, 219–238.

    CAS  Google Scholar 

  • Ramos, A., & Santos, H. (1996). Citrate and sugar cofermentation in Leuconostoc oenos, a 13 C nuclear magnetic resonance study. Applied and Environmental Microbiology, 62, 2577–2585.

    CAS  Google Scholar 

  • Ramos, A., Lolkema, J. S., Konings, W. N., & Santos, H. (1995). Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Applied and Environmental Microbiology, 61, 1303–1310.

    CAS  Google Scholar 

  • Rankine, B. C., & Pocock, K. F. (1969). Influence of yeast strain on binding sulphur dioxide in wines, and on its formation during fermentation. Journal of the Science of Food and Agriculture, 10, 204–109.

    Google Scholar 

  • Ribéreau-Gayon, J., Peynaud, E., Ribéreau-Gayon, P., & Sudraud, P. (1975). Sciences et techniques du vin, vol 2. Paris: Dunod.

    Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (2006). In P. Ribéreau-Gayon (Ed.), Handbook of enology, vol. 1. The microbiology of wine and vinifications. Chichester: Wiley.

    Chapter  Google Scholar 

  • Riesen, R. (1992). Undesirable fermentation aromas. In T. Henick-Kling (Ed.), Proceedings of the ASEV/ES workshop: Wine aroma defects (pp. 1–43). Corning: American Society of Enology and Viticulture.

    Google Scholar 

  • Rodas, A. M., Ferrer, S., & Pardo, I. (2003). 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Systematic and Applied Microbiology, 26, 412–422.

    Article  CAS  Google Scholar 

  • Rodas, A. M., Chenoll, E., Macián, M. C., Ferrer, S., Pardo, I., & Aznar, R. (2006). Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. International Journal of Systematic and Evolutionary Microbiology, 56, 513–517.

    Article  CAS  Google Scholar 

  • Rojo-Bezares, B., Saenz, Y., Zarazaga, M., Torres, C., & Ruiz-Larrea, F. (2007). Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. International Journal of Food Microbiology, 116, 32–36.

    Article  CAS  Google Scholar 

  • Rojo-Bezares, B., Sáenz, Y., Navarro, L., Jiménez-Díaz, R., Zarazaga, M., Ruiz-Larrea, F., et al. (2008). Characterization of a new organization of the plantaricin locus in the inducible bacteriocin-producing Lactobacillus plantarum J23 of grape must origin. Archives of Microbiology, 189, 491–499.

    Article  CAS  Google Scholar 

  • Romero, S. V., Reguant, C., Bordons, A., & Masqué, M. C. (2009). Potential formation of ethyl carbamate in simulated wine inoculated with Oenococcus oeni and Lactobacillus plantarum. International Journal of Food Science & Technology, 44, 1206–1213.

    Article  CAS  Google Scholar 

  • Rosi, I., Gheri, A., Domizio, P., & Pia, G. (1999). Production de macromolécules pariétales de Saccharomyces cerevisiae au cours de la fermentation et leur influence sur la fermentation malolactique. Revue des Œnologues, 94, 18–20.

    Google Scholar 

  • Rosi, I., Nannelli, F., & Giovani, G. (2009). Biogenic amine production by Oenococcus oeni during malolactic fermentation of wines obtained using different strains of Saccharomyces cerevisiae. Food Science and Technology, 42, 525–530.

    CAS  Google Scholar 

  • Ruiz, P., Izquierdo, P. M., Seseña, S., & Palop, M. L. (2008). Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE pattern. Food Microbiology, 25, 942–948.

    Article  CAS  Google Scholar 

  • Ruiz, P., Izquierdo, P. M., Seseña, S., & Palop, M. L. (2010). Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages. Food Control, 21, 70–75.

    Article  CAS  Google Scholar 

  • Sáenz, Y., Rojo-Bezares, B., Navarro, L., Díez, L., Somalo, S., Zarazaga, M., et al. (2009). Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. International Journal of Food Microbiology, 134, 176–183.

    Article  CAS  Google Scholar 

  • Salado, A. I. C., & Strasser de Saad, A. M. (1995). Glycerol utilization by Pediococcus pentosaceus strains isolated from Argentinean wines. Microbiologie, Aliments, Nutrition, 13, 319–325.

    CAS  Google Scholar 

  • Sauvageot, N., Gouffi, K., Lapace, J.-M., & Auffray, Y. (2000). Glycerol metabolism in Lactobacillus collinoides: Production of 3-hydroxypropionaldehyde, a precursor of acrolein. International Journal of Food Microbiology, 55, 167–170.

    Article  CAS  Google Scholar 

  • Schütz, H., & Radler, F. (1984). Anaerobic reduction of glycerol to propandiol-1, 3 by Lactobacillus brevis and Lactobacillus buchneri. Systematic and Applied Microbiology, 5, 169–178.

    Google Scholar 

  • Seaman, V., Charles, M., & Cahill, T. A. (2006). A sensitive method for the quantification of acrolein and other volatile carbonyls in ambient air. Analytical Chemistry, 78, 2405–2412.

    Article  CAS  Google Scholar 

  • Shalaby, A. R. (1996). Significance of biogenic amines to food safety and human health. Food Research International, 29, 675–690.

    Article  CAS  Google Scholar 

  • Silva, H. A. D. F. O., & Álvares-Ribeiro, L. M. B. C. (2002). Optimization of a flow injection analysis system for tartaric acid determination in wines. Talanta, 58, 1311–1318.

    Article  CAS  Google Scholar 

  • Silva, A., Lambri, M., & Fumi, M. D. (2007). Ochratoxin A decontamination by lactic acid bacteria in wine: Adsorption or biodegradation? Proceeding Oeno 2007 VIII Symposium Internationaòl d’Oenologie-Bordeaux, pp. 24–27 Juin Paris Ed Tec & DOC.

  • Smit, A. Y., Du Toit, W. J., & Du Toit, M. (2008). Biogenic amines in wine: Understanding the headache. South African Journal of Oenology and Viticulture, 29, 109–127.

    CAS  Google Scholar 

  • Snelten, H. J., & Schaafsma, G. (1992). Health aspects of oral sulphite and sulphite in wine. Voeding, 53, 88–90.

    CAS  Google Scholar 

  • Sobolov, M., & Smiley, K. L. (1960). Metabolism of glycerol by an acrolein-forming Lactobacillus. Journal of Bacteriology, 79, 261–266.

    CAS  Google Scholar 

  • Spano, G., & Massa, S. (2006). Environmental stress response in wine lactic acid bacteria: Beyond Bacillus subtilis. Critical Reviews in Microbiology, 32, 77–86.

    Article  CAS  Google Scholar 

  • Spano, G., Rinaldi, A., Ugliano, M., Moio, L., Beneduce, L., & Massa, S. (2005). A β-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. Journal of Applied Microbiology, 98, 855–861.

    Article  CAS  Google Scholar 

  • Splittstoesser, D. F., & Stoyla, B. A. (1989). Effect of various inhibitors on the growth of lactic acid bacteria in a model grape juice system. Journal of Food Protection, 52, 240–243.

    CAS  Google Scholar 

  • Sponholz, W.-R. (1993). In G. H. Fleet (Ed.), Wine microbiology and technology (pp. 395–420). Amsterdam: Harwood Academic.

    Google Scholar 

  • Starrenburg, M. J. C., & Hugenholtz, J. (1991). Citrate fermentation by Lactococcus and Leuconostoc spp. Applied and Environmental Microbiology, 57, 3535–3540.

    CAS  Google Scholar 

  • Strasser de Saad, A. M., & Manca de Nadra, M. C. (1993). Characterization of bacteriocin produced by Pediococcus pentosaceus from wine. The Journal of Applied Bacteriology, 74, 406–410.

    CAS  Google Scholar 

  • Straub, B. W., Kicherer, M., Schilcher, S. M., & Hammes, W. P. (1995). The formation of biogenic amines by fermentation organisms. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung, 201, 79–82.

    Article  CAS  Google Scholar 

  • Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. S. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11, 139–173.

    Article  CAS  Google Scholar 

  • Ten Brink, B., Damink, C., Joosten, H. M. L. J., & Huis in ’t Veld, J. H. J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology, 11, 73–84.

    Article  Google Scholar 

  • Terrade, N., & Mira de Orduña, R. (2009). Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus. International Journal of Food Microbiology, 133, 8–13.

    Article  CAS  Google Scholar 

  • Tonon, T., & Lonvaud-Funel, A. (2002). Arginine metabolism by wine Lactobacilli isolated from wine. Food Microbiology, 19, 451–461.

    Article  CAS  Google Scholar 

  • Ugliano, M., & Moio, L. (2005). Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. Journal of Agricultural and Food Chemistry, 53, 10134–10139.

    Article  CAS  Google Scholar 

  • Uthurry, C. A., Suárez Lepe, J. A., Lombardero, J., & Garcia Del Hierro, J. R. (2006). Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry, 94, 262–270.

    CAS  Google Scholar 

  • Vaillant, H., Formisyn, P., & Gerbaux, V. (1995). Malolactic fermentation of wine: Study of the influence of some physico-chemical factors by experimental design assays. The Journal of Applied Bacteriology, 79, 640–650.

    CAS  Google Scholar 

  • Vallet, A., Lucas, P., Lonvaud-Funel, A., & De Revel, G. (2008). Pathways that produce volatile sulphur compounds from methionine in Oenococcus oeni. Journal of Applied Microbiology, 104, 1833–1840.

    Article  CAS  Google Scholar 

  • Vallet, A., Santarelli, X., Lonvaud-Funel, A., de Revel, G., & Cabanne, C. (2009). Purification of an alcohol dehydrogenase involved in the conversion of methional to methionol in Oenococcus oeni IOEB 8406. Applied Microbiology and Biotechnology, 82, 87–94.

    Article  CAS  Google Scholar 

  • Van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82, 187–216.

    Article  Google Scholar 

  • Van Vuuren, H. J. J., & Dicks, L. M. T. (1993). Leuconostoc oenos: A review. American Journal of Enology and Viticulture, 44, 99–112.

    Google Scholar 

  • Vaquero, I., Marcobal, A., & Muñoz, R. (2004). Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 96, 199–204.

    Article  CAS  Google Scholar 

  • Vaughn, R. H. (1955). Bacterial spoilage of wines with special reference to California conditions. Advances in Food Research, 6, 67–108.

    CAS  Google Scholar 

  • Vivas, N., Augustin, M., & Lonvaud-Funel, A. (2000). Influence of oak wood and grape tannins on the lactic acid bacterium Oenococcus oeni (Leuconostoc oenos, 8413). Journal of the Science of Food and Agriculture, 80, 1675–1678.

    Article  CAS  Google Scholar 

  • Vollenweider, S., Grassi, G., König, I., & Puhan, Z. (2003). Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. Journal of Agricultural and Food Chemistry, 51, 3287–3293.

    Article  CAS  Google Scholar 

  • Volschenk, H., van Vuuren, H. J. J., & Viljoen-Bloom, M. (2006). Malic acid in wine: Origin, function and metabolism during vinification. South African Journal of Enology and Viticulture, 27, 123–136.

    CAS  Google Scholar 

  • Waterhouse, A. L. (2002). Wine phenolics. Annals of the New York Academy of Sciences, 957, 21–36.

    Article  CAS  Google Scholar 

  • Weimer, B., Seefeldt, K., & Dias, B. (1999). Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek, 76, 247–261.

    Article  CAS  Google Scholar 

  • Wibowo, D., Eschenbruch, R., Davis, D. R., Fleet, G. H., & Lee, T. H. (1985). Occurrence and growth of lactic acid bacteria in wine: A review. American Journal of Enology and Viticulture, 36, 302–313.

    CAS  Google Scholar 

  • Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., & Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12, 151–161.

    Article  CAS  Google Scholar 

  • Yurdugül, S., & Bozoglu, F. (2002). Studies on an inhibitor produced by lactic acid bacteria of wines on the control of malolactic fermentation. European Food Research and Technology, 215, 38–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maret du Toit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Toit, M., Engelbrecht, L., Lerm, E. et al. Lactobacillus: the Next Generation of Malolactic Fermentation Starter Cultures—an Overview. Food Bioprocess Technol 4, 876–906 (2011). https://doi.org/10.1007/s11947-010-0448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0448-8

Keywords

Navigation