Skip to main content

Advertisement

Log in

Modification of Food-Contacting Surfaces by Plasma Polymerization Technique: Reducing the Biofouling of Microorganisms on Stainless Steel Surface

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, the prevention of the attachment of test microorganism Enterobacter sakazakii onto stainless steel (SS 316) surfaces by radio frequency (RF) plasma polymerization (PlzP) technique using several hydrophilic monomers as precursors was reported. Different plasma conditions (RF discharge power of 20–80 W with exposure time of 10 min) were employed during the modifications. PlzP-modified surfaces were characterized in detail by static contact angle measurements in order to state the change of surface hydrophilicity. The surface topology of unmodified and PlzP [ethylenediamine (EDA)]-modified SS 316 plates was characterized by atomic force microscopy. The attachment of the model microorganism on the SS 316 surface modified by plasma using EDA at 45 W and 10 min was reduced by 99.74% in comparison to the unmodified control surface. For equilibrium adsorption behavior, Freundlich and Langmuir models were attempted and model parameters for Freundlich (K F and 1/n) and for Langmuir (a and b) were obtained. The values of the K F and 1/n were 5.6 and 0.58 and 0.9 and 0.39, respectively; the values of a and b were 25 × 104 and 1.82 × 10−8 and 0.3 × 104 and 7.96 × 10-8, for bare and PlzP-EDA-modified SS 316 surfaces, respectively. As a result, PlzP technique was found to be an alternative simple method to decrease the microbial attachment and create bacterial anti-fouling surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beyth, N., Yudovin-Farberb, I., Bahira, R., Domb, A. J., & Weiss, E. I. (2006). Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 27, 3995–4002.

    Article  CAS  Google Scholar 

  • Beyth, N., Houri-Haddad, Y., Baraness-Hadar, L., Yudovin-Farber, I., Domb, A. J., & Weiss, E. I. (2008). Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 29, 4157–4163.

    Article  CAS  Google Scholar 

  • Biederman, H., Boyaci, I. H., Bilkova, P., Slavinska, D., Mutlu, S., Zemek, J., et al. (2001). Characterization of glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. Journal of Applied Polymer Science, 81(6), 1341–1352.

    Article  CAS  Google Scholar 

  • Boyd, R. D., Verran, J., Jones, M. V., & Bhakoo, M. (2002). Use of atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir, 18, 2343–2346.

    Article  CAS  Google Scholar 

  • Chua, P. K., Chena, J. Y., Wanga, L. P., & Huangb, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering, 36, 143–206.

    Article  Google Scholar 

  • Costerton, J. W., & Lappin Scott, H. M. (1989). Behaviour of bacteria in biofilms. American Society for Microbiology News, 55, 650–654.

    Google Scholar 

  • Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. L., Nickel, J. C., Dasgupta, M., et al. (1987). Bacterial biofilms in nature and disease. Annual Reviews of Microbiology, 41, 435–464.

    Article  CAS  Google Scholar 

  • Criado, M. T., Suarez, B., & Ferreiros, C. M. (1994). The importance of bacterial adhesion in the dairy industry. Food Technology, 48, 123–126.

    Google Scholar 

  • Doğan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air and Soil Pollution, 120, 229–248.

    Article  Google Scholar 

  • Flint, S. H., Bremer, P. J., & Brooks, J. D. (1997). Biofilms in dairy manufacturing plant- description, current concerns and methods of control. Biofouling, 11, 81–97.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • Güleç, H. A., Sarıoğlu, K., & Mutlu, M. (2006). Modification of food contacting surfaces by plasma polymerisation technique: part I: determination of hydrophilicity, hydrophobicity and surface free energy by contact angle method. Journal of Food Engineering, 75, 187–195.

    Article  Google Scholar 

  • Janocha, A., Hegemann, D., Oehr, C., Brunner, H., Rupp, F., & Geis-Gerstorfer, J. (2001). Adsorption of protein on plasma-polysiloxane layers of different surface energies. Surface and Coatings Technology, 142–144, 1051–1055.

    Article  Google Scholar 

  • Kaminska, A., Kaczmarek, H., & Kowalonek, J. (2002). The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action. European Polymer Journal, 38, 1915–1919.

    Google Scholar 

  • Kim, H., Ryu, J.-H., & Beuchat, L. R. (2006). Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Applied and Environmental Microbiology, 72, 5846–5856.

    Article  CAS  Google Scholar 

  • Kratochvil, D., & Volesky, B. (1998). Advances in the biosorption of heavy metals-reviews. Trends in Biotechnology, 16, 291–300.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1368.

    Article  CAS  Google Scholar 

  • Liston, E. M., Martinu, W., & Wertheimer, W. R. (1993). Plasma surface modification of polymers for improved adhesion-a critical review. Journal of Adhesion Science and Technology, 7, 1091–1127.

    Article  CAS  Google Scholar 

  • Mafu, A. A., Roy, D., Goulet, J., & Hagny, P. (1990). Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene and rubber surfaces after short contact times. Journal of Food Protection, 53, 742–746.

    CAS  Google Scholar 

  • Mutlu, M., Mutlu, S., Rosenberg, M. F., Kane, J., Jones, M. N., & Vadgama, P. (1991). Matrix surface modification by plasma polymerization for enzyme immobilization. Journal of Materials Chemistry, 1(3), 447–450.

    Article  CAS  Google Scholar 

  • Mutlu, M., Mutlu, S., Alp, B., Boyacı, I. H., & Piskin, E. (1997). Preparation of a single layer enzyme electrode by plasma polymerization technique. In R. D’Agostino, P. Favia & F. Fracassi (Eds.), Plasma processing of polymers (pp. 477–485). The Netherlands: Kluwer.

    Google Scholar 

  • Mutlu, S., Saber, R., Kocum, C., & Piskin, E. (1999). An immunosensor: immobilization of anti-HBs antibody on glow-discharge treated piezoelectric quartz crystal for HBs-AG detection. Analytical Letters, 32(2), 317–334.

    Article  CAS  Google Scholar 

  • Mutlu, S., Çökeliler, D., & Mutlu, M. (2007). Modification of food contacting surfaces by plasma polymerisation technique. Part II: static and dynamic adsorption behavior of a model protein “bovine serum albumin” on stainless steel surface. Journal of Food Engineering, 78, 494–499.

    Article  CAS  Google Scholar 

  • Mutlu, S., Cokeliler, D., Shard, A., Goktas, H., Ozansoy, B., & Mutlu, M. (2008). Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor. Thin Solid Films, 516(6), 1249–1255.

    Article  CAS  Google Scholar 

  • Niemira, B. A. (2008). Irradiation sensitivity of planktonic and biofilm-associated listeria monocytogenes and L. innocua as influenced by temperature of biofilm formation. Food and Bioprocess Technology, doi:10.1007/s11947-008-0079-5.

    Google Scholar 

  • Norde, W., Arai, T., & Shirahama, H. (1991). Protein adsorption in model systems. Biofouling, 4, 37–51.

    Article  CAS  Google Scholar 

  • Saber, R., Mutlu, S., & Piskin, E. (2002). Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosensors & Bioelectronics, 17(9), 727–734.

    Article  CAS  Google Scholar 

  • Roudman, A. R., & Di Giano, F. A. (2000). Surface energy of experimental and commercial nanofiltration membranes: effects of wetting and natural organic matter fouling. Journal of Membrane Science, 175, 61–73.

    Article  CAS  Google Scholar 

  • Ryu, J.-H., & Beuchat, L. R. (2005). Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on ıts resistance to chlorine. Applied and Environmental Microbiology, 71, 247–254.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr. (1972). Physicochemical processes for water quality control (p. 208). New York: Wiley.

    Google Scholar 

Download references

Acknowledgment

This research has been partly supported by The Scientific and Technical Research Council of Turkey TUBITAK 2209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Mutlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şen, Y., Bağcı, U., Güleç, H.A. et al. Modification of Food-Contacting Surfaces by Plasma Polymerization Technique: Reducing the Biofouling of Microorganisms on Stainless Steel Surface. Food Bioprocess Technol 5, 166–175 (2012). https://doi.org/10.1007/s11947-009-0248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0248-1

Keywords

Navigation