Skip to main content
Log in

Chromatic Characteristics and Optically Derived Compositional Descriptors of Micro-oxygenated Wines from Vitis vinifera cv. Merlot and Cabernet Sauvignon

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A 6-month time series of chromatic characteristics and optically derived compositional descriptors was obtained for replicate full-scale commercial micro-oxygenated trials and control wines from two varieties, Vitis vinifera cv. Merlot and Cabernet Sauvignon. Two-week post-fermentation micro-oxygenation treatments resulted in a suite of optical properties and compositional descriptors significantly different from corresponding replicate non-micro-oxygenated control wines. After several months of barrel aging, both the Merlot and Cabernet Sauvignon micro-oxygenated wines had increased color density (35% and 7%, respectively), higher color due to derivatives resistant to sulfur dioxide bleaching (40% and 45%, respectively), and higher wine age (10% and 35%, respectively) relative to the controls. Merlot wines decreased in yellow tonality (3%) due to treatment, whereas the Cabernet Sauvignon wines increased in both yellow (3%) and blue tonality (6%). Cabernet Sauvignon wines responded to micro-oxygenation about 10 to 30 days slower than their Merlot counterparts. Principal components analysis using the optical descriptors was successful in distinguishing micro-oxygenated from control wines within and between varieties and in following the time-course of wine aging for each treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arvanitoyannis, I. S., Katsota, M. N., Psarra, E. P., Soufleros, E. H., & Kallithraka, S. (1999). Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends in Food Science & Technology, 10, 321–336. doi:10.1016/S0924-2244(99)00053-9.

    Article  CAS  Google Scholar 

  • Atanasova, V., Fulcrand, H., Cheynier, V., & Moutounet, M. (2002). Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Analytica Chimica Acta, 458, 15–27.

    CAS  Google Scholar 

  • Cai, Y., Lilley, T. H., & Haslam, E. (1990). Polyphenol-anthocyanin copigmentation. Journal of the Chemical Society—Perkin Transactions, 2, 247–257.

    Google Scholar 

  • Cano-Lopez, M., Pardo-Minguez, F., Lopez-Roca, J. M., & Gomez-Plaza, E. (2006). Effect of microoxygenation on anthocyanin and derived pigment content and chromatic characteristics of red wines. American Journal of Enology and Viticulture, 57, 325–331.

    CAS  Google Scholar 

  • Cano-Lopez, M., Pardo-Minguez, F., Lopez-Roca, J. M., & Gomez-Plaza, E. (2007). Chromatic characteristics and anthocyanin profile of a micro-oxygenated red wine after oak or bottle maturation. European Food Resource and Technology, 225, 127–132. doi:10.1007/s00217-006-0390-1.

    Article  CAS  Google Scholar 

  • Castellari, M., Arfelli, G., Riponi, C., & Amati, A. (1998). Evolution of phenolic compounds in red winemaking as affected by must oxygenation. American Journal of Enology and Viticulture, 49, 91–94.

    CAS  Google Scholar 

  • Castellari, M., Matricardi, L., Arfelli, G., Galassi, C., & Amati, A. (2000). Level of single bioactive phenolics in red wine as a function of the oxygen supplied during storage. Food Chemistry, 69, 61–67. doi:10.1016/S0308-8146(99)00240-X.

    Article  CAS  Google Scholar 

  • Castellari, M., Simonato, B., Tornielli, G. B., Spinelli, P., & Ferrarini, R. (2004). Effects of different enological treatments on dissolved oxygen in wines. Italian Journal of Food Sciences, 16, 387–396.

    CAS  Google Scholar 

  • de Beer, D., Joubert, E., Marais, J., & Manley, M. (2008). Effect of oxygenation during maturation on phenolic composition, total antioxidant capacity, colour and sensory quality of pinotage wine. South African Journal of Enology and Viticulture, 29, 13–25.

    Google Scholar 

  • del Carmen Llaudy, M., Canals, R., Gonzalez-Manzano, S., Miquel Canals, J., Santos-Buelga, C., & Zamora, F. (2006). Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. Journal of Agricultural and Food Chemistry, 54, 4246–4252. doi:10.1021/jf052842t.

    Article  Google Scholar 

  • Dempsey, C. (2001) Micro-oxygenation in wine: Integrated tannin management. Wine Business Online, June. Available at: www.winebusiness.com/html/MonthlyArticle.cfm?dataId=13470. Accessed 16 June 2008.

  • du Toit, W. J., Lisjak, K., Marais, J., & du Toit, M. (2006). The effect of micro-oxygenation on the phenolic composition, quality and aerobic wine-spoilage microorganisms of different South African red wines. South African Journal of Enology and Viticulture, 27, 57–67.

    CAS  Google Scholar 

  • Dykes, S., & Kilmartin, P. (2007). Micro-oxygenation—Optimizing the maturation process. Australian and New Zealand Wine Industry Journal, 22, 31–45.

    Google Scholar 

  • Felipe Laurie, V., Law, R., Joslin, W. S., & Waterhouse, A. L. (2008). In situ measurements of dissolved oxygen during low-level oxygenation in wines. American Journal of Enology and Viticulture, 59, 215–219.

    Google Scholar 

  • Fulcrand, H., Cameira dos Santos, P. J., Sarni-Manchado, P., Cheynier, V., & Favre-Bonvin, J. (1996). Structure of new anthocyanin-derived wine pigments. Journal of the Chemical Society. Perkin Transactions. 1, 7, 735–739. doi:10.1039/p19960000735.

    Article  Google Scholar 

  • Giusti, A. M., Bignetti, E., & Cannella, C. (2008). Exploring new frontiers in total food quality definition and assessment: From chemical to neurochemical properties. Food Bioprocess Technology, 1, 130–142. doi:10.1007/s11947-007-0043-9.

    Article  Google Scholar 

  • Glories, Y. (1984). La couleur des vins rouges. 2 e partie. Mesure, origine, et interpretation. Connaissance Vigne Vin, 18, 253–271.

    CAS  Google Scholar 

  • Gomez-Cordoves, C., Gonzalez-San Jose, M. L., Junquera, B., & Estrella, I. (1995). Correlation between flavonoids and color in red wines aged in wood. American Journal of Enology and Viticulture, 46, 295–298.

    CAS  Google Scholar 

  • Jones, P. R., Kwiatkowski, M. J., Skouroumounis, G. K., Francis, I. L., Lattey, K. A., Waters, E. J., et al. (2004). Exposure of red wine to oxygen post-fermentation—If you can’t avoid it, why not control it? Australian and New Zealand Wine Industry Journal, 19, 17–24.

    Google Scholar 

  • Kallithraka, S., Arvanitoyannis, I., El-Zajouli, A., & Kefalas, P. (2001a). The application of an improved method for trans-resveratrol to determine the origin of Greek red wines. Food Chemistry, 75, 355–363. doi:10.1016/S0308-8146(01)00213-8.

    Article  CAS  Google Scholar 

  • Kallithraka, S., Arvanitoyannis, I., Kefalas, P., El-Zajouli, A., Soufleros, E., & Psarra, E. (2001b). Instrumental and sensory analysis of Greek wines: Implementation of principal component analysis (PCA) for classification according to geographical origin. Food Chemistry, 73, 501–514. doi:10.1016/S0308-8146(00)00327-7.

    Article  CAS  Google Scholar 

  • Liao, H., Cai, Y., & Haslam, E. (1992). Polyphenol interactions. Anthocyanins: Copigmentation and colour changes in red wines. Journal of the Science of Food and Agriculture, 59, 299–305. doi:10.1002/jsfa.2740590305.

    Article  CAS  Google Scholar 

  • Macedo, S., Fernandes, S., Lopes, J. A., de Sousa, H. C., Pereira, P. J., Carmelo, P. J., et al. (2008). Recovery of wine-must aroma compounds by supercritical CO2. Food Bioprocess Technology, 1, 74–81. doi:10.1007/s11947-007-0002-5.

    Article  Google Scholar 

  • McCord, J. (2003). Application of toasted oak and micro-oxygenation to ageing of Cabernet Sauvignon wines. Australian and New Zealand Grapegrower Winemaker, 7, 43–51.

    Google Scholar 

  • Nevares, I., & Del Alamo, M. (2007). Measurement of dissolved oxygen during red wines tank aging with chips and micro-oxygenation. Analytica Chimica Acta, 621, 68–78. doi:10.1016/j.aca.2007.11.042.

    Article  Google Scholar 

  • Nevares, I., Del Alamo, M., Carcel, L. M., Crespo, R., Martin, C., & Gallego, L. (2008). Measure the dissolved oxygen consumed by red wines in aging tanks. Food Bioprocess Technology. doi:10.1007/s11947-008-0109-3.

  • Parish, M., Wollan, D., & Paul, R. (2000). Microoxygenation: A review. Australina and New Zealand Grapegrower Winemaker, 438a, 47–50.

    Google Scholar 

  • Perez-Magarino, S., Sanchez-Iglesias, M., Ortega-Heras, M., Gonzales-Huerta, C., & Gonzales-Sanjose, M. L. (2007). Colour stabilization of red wines by microoxygenation treatment before malolactic fermentation. Food Chemistry, 101, 881–893. doi:10.1016/j.foodchem.2006.02.037.

    Article  CAS  Google Scholar 

  • Puech, J. L., Feulliat, F., & Mosedale, J. R. (1999). The tannins of oak heartwood: Structure, properties and their influence on wine flavor. American Journal of Enology and Viticulture, 50, 469–478.

    CAS  Google Scholar 

  • Rayne, S. (2007). Micro-oxygenation impacts on wine colour. Australian and New Zealand Grapegrower Winemaker, 10, 75–79.

    Google Scholar 

  • Remy, S., Fulcrand, H., Labarbe, B., Cheynier, V., & Moutounet, M. (2000). First confirmation in red wine of products resulting from direct anthocyanin–tannin reactions. Journal of the Science of Food and Agriculture, 80, 745–751. doi:10.1002/(SICI)1097-0010(20000501)80:6<745::AID-JSFA611>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  • Ribereau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Handbook of enology, volume 2: The chemistry of wine stabilization and treatments. New York: Wiley.

    Google Scholar 

  • Romero, C., & Bakker, J. (2000a). Anthocyanin and colour evolution during maturation of four port wines: Effect of pyruvic acid addition. Journal of the Science of Food and Agriculture, 81, 252–260. doi:10.1002/1097-0010(20010115)81:2<252::AID-JSFA810>3.0.CO;2-5.

    Article  Google Scholar 

  • Romero, C., & Bakker, J. (2000b). Effect of acetaldehyde and several acids on the formation of vitisin A in model wine anthocyanin and colour evolution. International Journal of Food Science & Technology, 35, 129–140. doi:10.1046/j.1365-2621.2000.00372.x.

    Article  CAS  Google Scholar 

  • Sartini, E., Arfellia, G., Fabiania, A., & Piva, A. (2007). Influence of chips, lees and micro-oxygenation during aging on the phenolic composition of a red Sangiovese wine. Food Chemistry, 104, 1599–1604. doi:10.1016/j.foodchem.2007.03.010.

    Article  CAS  Google Scholar 

  • Sass-Kiss, A., Kiss, J., Havadi, B., & Adanyi, N. (2008). Multivariate statistical analysis of botrytised wines of different origin. Food Chemistry, 110, 742–750. doi:10.1016/j.foodchem.2008.02.059.

    Article  CAS  Google Scholar 

  • Saucier, C., Little, D., & Glories, Y. (1997). First evidence of acetaldehyde-flavanol condensation products in red wine. American Journal of Enology and Viticulture, 48, 370–373.

    CAS  Google Scholar 

  • Singleton, V. L. (1995). Maturation of wines and spirits: Comparisons, facts, and hypotheses. American Journal of Enology and Viticulture, 46, 98–115.

    CAS  Google Scholar 

  • Somers, T. C., & Evans, M. E. (1974). Wine quality: Correlation with color density and anthocyanin equilibria in a group of young red wines. Journal of the Science of Food and Agriculture, 25, 1369–1379. doi:10.1002/jsfa.2740251105.

    Article  CAS  Google Scholar 

  • Somers, T. C., & Evans, M. E. (1977). Spectral evolution of young red wine: Anthocyanin equilibria, total phenolics, free and molecular SO2, chemical age. Journal of the Science of Food and Agriculture, 28, 279–287. doi:10.1002/jsfa.2740280311.

    Article  CAS  Google Scholar 

  • Sullivan, P. (2002) The effects of microoxygenation on red wines. MSc Thesis. Department of Viticulture and Enology, California State University, Fresno CA, USA.

  • Tao, J., Dykes, S., & Kilmartin, P. (2007). Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation. Journal of Agricultural and Food Chemistry, 55, 6104–6109. doi:10.1021/jf070625h.

    Article  CAS  Google Scholar 

  • Vivas, N., Glories, Y., & Raymond, P. (1997). Quelques observations sur l’evolution des qualites organoleptiques des vins rouges au cours de leur elevage en barriques neuves. Revue française d’oenologie, 166, 31–34.

    Google Scholar 

  • Wildenradt, H. L., & Singleton, V. L. (1974). The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. American Journal of Enology and Viticulture, 25, 119–126.

    CAS  Google Scholar 

  • Zoecklein, B. W., Carey, R., & Sullivan, P. (2002). Current theory and application of micro-oxygenation. Wine East, 30, 28–34.

    Google Scholar 

  • Zoecklein, B. W., Carey, R., & Sullivan, P. (2003). Micro-oxygenation of red table wines. Wine East, 31, 28–33.

    Google Scholar 

Download references

Acknowledgments

S.R. thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support. Thanks to the staff and owner of the Cedar Creek Estate Winery for technical assistance, expertise, and financial support during this study. We are also grateful to the Chemistry, Earth and Environmental Sciences Unit of UBC Okanagan for financial support that helped make this work possible and to Ms. Judit Moldovan (Laboratory Manager, UBC Okanagan Chemistry) for technical and administrative assistance. Three anonymous reviewers are thanked for their helpful suggestions regarding an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sierra Rayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayne, S., Sheppard, S., Di Bello, T. et al. Chromatic Characteristics and Optically Derived Compositional Descriptors of Micro-oxygenated Wines from Vitis vinifera cv. Merlot and Cabernet Sauvignon. Food Bioprocess Technol 4, 254–265 (2011). https://doi.org/10.1007/s11947-008-0152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0152-0

Keywords

Navigation