Skip to main content

Advertisement

Log in

Effect of Culture Variables on Mycelial Arachidonic acid Production by Mortierella alpina

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effect of culture conditions on biomass, lipid, and arachidonic acid production was investigated in the oleaginous fungus Mortierella alpina CBS 528.72 under shake flask conditions. Several factors have been found to affect the biomass buildup and lipogenesis in this fungus, complicated by the fact that different strains demonstrate varying optimization conditions. Growth, lipid accumulation, and arachidonic acid production in the strain investigated were influenced by media, pH, temperature, carbon source, nitrogen source, etc. The results indicated that the most effective medium for growth and arachidonic acid production was glucose yeast extract medium. The optimum pH and temperature were found to be 6.5 and 28°C, respectively. On the same weight basis, glucose was the most efficient carbon source for biomass and lipid production in this fungal strain which yielded 6.8 g/L dry biomass and 40.2% (w/w) total lipid after 7 days of cultivation. Maximum arachidonic acid (ARA) production of 40.41% achieved in rhamnose-containing media was not concomitant with higher biomass and lipid yields. Efficacy of organic carbon sources, viz, yeast extract and peptone over inorganic sources like sodium nitrate, ammonium sulfate, ammonium chloride, etc, was established in the present study. M. alpina CBS 528.72 grown in peptone acquired the highest lipid content (42.0% (w/w)). However, the ARA content (28.74%) proved to be significantly less than that grown in yeast extract (35.28%). Furthermore, it was found that the biomass and ARA production declined drastically in a medium with vegetable oils as the sole carbon source but triggered the lipogenic pathway leading to higher accumulation of total lipids. Under the ideal conditions mentioned above, the maximum biomass, total lipid, and arachidonic acid production were 6.8 g/L, 41.6%, and 35.28% total fatty acid, respectively, in shake flask system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar, H. H., Mirza, A. Q., Nawazish, M. N., & Chughuta, M. I. D. (1983). Effect of triglycerides on the production of lipids and lipases by Mucor hiemalis. Canadian Journal of Microbiology, 29, 664–669.

    Article  CAS  Google Scholar 

  • AOAC. (2000) Official methods of analysis of Association of Official Analytical Chemists. In: W. Horwitz (Ed). 17th edn., Vol II, Method 963.15, Association of Official Analytical Chemists, Gaithersburg, MD, USA

  • Bajpai, P. K., Bajpai, P., & Ward, O. P. (1991). Arachidonic acid production by fungi. Applied and Environmental Microbiology, 57(4), 1255–1258.

    CAS  Google Scholar 

  • Birch, E. E., Garfield, S., Hoffman, D. R., Uauy, R., & Birch, D. G. (2000). A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Developmental Medicine & Child Neurology, 42(3), 174–181. doi:10.1017/S0012162200000311.

    Article  CAS  Google Scholar 

  • Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J., & Tolley, E. A. (1993). Arachidonic acid status correlates with first year growth in preterm infants. Proceedings of the National Academy of Sciences of the United States of America, 90, 1073–1077. doi:10.1073/pnas.90.3.1073.

    Article  CAS  Google Scholar 

  • Certik, M., Megova, J., & Horenitzky, R. (1999). Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. Journal of General and Applied Microbiology, 45(6), 289–293. doi:10.2323/jgam.45.289.

    Article  CAS  Google Scholar 

  • Chen, H. C., Chang, C. C., & Chen, C. X. (1997). Optimization of arachidonic acid production by Mortierella alpina Wuji-H4 isolate. Journal of the American Oil Chemists’ Society, 74(5), 569–578. doi:10.1007/s11746-997-0182-1.

    Article  CAS  Google Scholar 

  • Cohen, Z., Vonshak, A., & Richmond, A. (1987). Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry, 26, 2255–2258. doi:10.1016/S0031-9422(00)84694-4.

    Article  CAS  Google Scholar 

  • Colla, E., Pereira, A. B., Hernalsteens, S., Maugeri, F., Rodrigues, M. I. (2008). Optimization of trehalose production by Rhodotorula dairenensis following a sequential strategy of experimental design. Food and Bioprocess Technology. doi:10.1007/s11947-008-0081-y.

  • Dyal, S. D., Bouzidi, L., & Narine, S. S. (2005). Maximizing the production of γ-linolenic acid in Mortierella rammanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Research International, 38, 815–829. doi:10.1016/j.foodres.2005.04.002.

    Article  CAS  Google Scholar 

  • Esfhani, M., Kucirka, E. M., Timons, F. X., Tyagi, S., Lord, A. E., & Henry, S. A. (1981). Effect of exogenous fatty acids on growth, membrane fluidity, and phospholipids fatty acid composition in yeasts. Journal of Supramolecular Structure and Cellular Biochemistry, 15, 119–128. doi:10.1002/jsscb.1981.380150203.

    Article  Google Scholar 

  • FAO/WHO Expert committee (1994). The role of essential fatty acids in neural development: implications for perinatal nutrition. American Journal of Clinical Nutrition, 57, 703S–10S.

    Google Scholar 

  • Forsyth, S., Willatts, P., Agostoni, C., Bissenden, J., Casaer, P., & Boehm, G. (2003). Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: followup of a randomized controlled trial. British Medical Journal, 326, 953. doi:10.1136/bmj.326.7396.953.

    Article  CAS  Google Scholar 

  • Higashiyama, K., Fujikowa, S., Park, E. Y., & Shimizu, S. (2002). Production of arachidonic acid by Mortierella fungi. Biotechnology and Bioprocess Engineering, 7, 252–262. doi:10.1007/BF02932833.

    Article  CAS  Google Scholar 

  • Hoffman, D. R., Birch, E. E., Birch, D. G., Uauy, R., Castaneda, Y. S., Lapus, M. G., et al. (2000). Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. Journal of Pediatric Gastroenterology and Nutrition, 311, 540–553. doi:10.1097/00005176-200011000-00016.

    Article  Google Scholar 

  • Hwang, B. H., Kim, J. W., Park, C. Y., Park, C. S., Kim, Y. S., & Ryu, Y. W. (2005). High level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnology Letters, 27, 731–735. doi:10.1007/s10529-005-5362-1.

    Article  CAS  Google Scholar 

  • Kendrick, B. (2001). The fifth kingdom (3 rd Ed.) pp. 30–31. Newburyport MA: Focus publishing.

    Google Scholar 

  • Kendrick, A., & Ratledge, C. (1996). Cessation of polyunsaturated fatty acid formation in four selected filamentous fungi when grown on plant oils. Journal of the American Oil Chemists’ Society, 73(4), 431–435. doi:10.1007/BF02523914.

    Article  CAS  Google Scholar 

  • Koletzko, B., Schmidt, E., Bremer, H., Huang, M., & Harzer, G. (1989). Effects of dietary long-chain polyunsaturated fatty acids on the essential fatty acid status of premature infants. European Journal of Pediatrics, 147, 669–675. doi:10.1007/BF00441531.

    Article  Google Scholar 

  • Koritala, S., Hesseltine, C. W., Pryde, E. H., & Mounts, T. L. (1987). Biochemical modification of fats by microorganisms: a preliminary survey. Journal of the American Oil Chemists’ Society, 64(4), 509–513. doi:10.1007/BF02636384.

    Article  CAS  Google Scholar 

  • Lindberg, A., & Molin, G. (1993). Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermentor cultures. Applied Microbiology and Biotechnology, 39(4–5), 450–455. doi:10.1007/BF00205031.

    Article  CAS  Google Scholar 

  • Moen, R., Nolan, T. W., & Provost, L. P. (1999). Quality improvement through planned experimentation (2nd Ed) p. 113. New York: McGraw-Hill Professional.

    Google Scholar 

  • Morale, S. E., Hoffman, D. R., Castaneda, Y. S., Wheaton, D. H., Burns, R. A., & Birch, E. E. (2005). Duration of long-chain polyunsaturated fatty acids availability in the diet and visual acuity. Early Human Development, 81, 197–203.

    CAS  Google Scholar 

  • Nishizaki, T., Nomura, T., Matsuoka, T., & Tsujishita, Y. (1999). Arachidonic acid as a messenger for the expression of long term potentiation. Biochemical and Biophysical Research Communications, 254(2), 446–449. doi:10.1006/bbrc.1998.9961.

    Article  CAS  Google Scholar 

  • Obukowicz, M. G., Welsch, D. J., Salsgiver, W. J., Martin-Berger, C. L., Chinn, K. S., Duffin, K. L., et al. (1998). Novel, selective δ6 or δ5 fatty acid desaturase inhibitors as anti-inflammatory agents in mice. Journal of Pharmacology and Experimental Therapeutics, 287, 157–166.

    CAS  Google Scholar 

  • Ratledge, C. (1989). Biotechnology of oils and fats. In C. Ratledge, & S. G. Wilkinson (Eds.), Microbial lipids (vol. 2, (pp. 567–668)). London: Academic.

    Google Scholar 

  • Seyberth, H. W., & Kuhl, P. G. (1988). The role of eicosanoids in paediatrics. European Journal of Pediatrics, 147(4), 341–349. doi:10.1007/BF00496408.

    Article  CAS  Google Scholar 

  • Shinmen, Y., Shimizu, S., Akimoto, K., Kawashima, H., & Yamada, H. (1989). Production of arachidonic acid by Mortierella fungi. Applied Microbiology and Biotechnology, 31(1), 11–16. doi:10.1007/BF00252518.

    Article  CAS  Google Scholar 

  • Shu, C., & Lung, M. (2004). Effect of pH on the production of molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochemistry, 39, 931–937. doi:10.1016/S0032-9592(03)00220-6.

    Article  CAS  Google Scholar 

  • SPSS Inc. (1998). SPSS base 8.0 for Windows User’s Guide. Chicago IL: SPSS.

    Google Scholar 

  • Sublette, M. E., Russ, M. J., & Smith, G. S. (2004). Evidence for the role of arachidonic acid cascade in affective disorders:a review. Bipolar Disorders, 6, 95–105. doi:10.1046/j.1399-5618.2003.00094.x.

    Article  CAS  Google Scholar 

  • Takeno, S., Sakuradani, E., Tomi, A., Ochiai, M. I., Kawashima, H., Ashikari, T., et al. (2005). Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-Desaturase gene expression. Applied and Environmental Microbiology, 71(9), 5124–5128. doi:10.1128/AEM.71.9.5124-5128.2005.

    Article  CAS  Google Scholar 

  • Totani, N., Yamaguchi, A., Yawata, M., & Ueda, T. (2002). The role of morphology during growth of Mortierella alpina in arachidonic acid production. Journal of Oleo Science, 51(8), 531–538.

    CAS  Google Scholar 

  • Uuay, R., Hoffman, D. R., Mena, P., Llanos, A., & Birch, E. E. (2003). Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized control trials. Journal of Pediatrics, 143, S17–25. doi:10.1067/S0022-3476(03)00398-6.

    Google Scholar 

  • Uauy, R., Mena, P., & Rojas, C. (2000). Essential fatty acids in early life: structural and functional role. Proceedings of Nutrition Society, 59, 3–15.

    Article  CAS  Google Scholar 

  • Ueno, H., Tanaka, M., Machmudah, S., Sasaki, M., Goto, M. (2008). Supercritical carbon dioxide extraction of valuable compounds from Citrus junos Seed. Food and Bioprocess Technology. doi:10.1007/s11947-007-0015-0.

  • Venkateswaran, G., Shashi, K., & Joseph, R. (1992). Influence of nitrogen status and mutation on the fatty acid profile of Rhodotorula gracilis. Current Science, 62, 580–583.

    CAS  Google Scholar 

  • Wang, Y., & Mc Neil, B. (1995). pH effects in exopolysaccharide and oxalic acid production in cultures of Sclerotium glucanicum. Enzyme and Microbial Technology, 17, 124–130. doi:10.1016/0141-0229(94)00053-T.

    Article  CAS  Google Scholar 

  • Weete, J. D. (1980). Lipid biochemistry of fungi and other organisms pp. 97–111. New York, NY: Plenum.

    Google Scholar 

  • Wynn, J. P., Hamid, A. A., Li, Y., & Ratledge, C. (2001). Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology, 147, 2857–2864.

    CAS  Google Scholar 

  • Yuan, C., Wang, J., Shang, Y., Gong, G., Yao, J., & Yu, Z. (2002). Production of arachidonic acid by Mortierella alpina I49-N18. Food Technology and Biotechnology, 40(4), 311–315.

    CAS  Google Scholar 

Download references

Acknowledgment

A. Nisha acknowledges Council of Scientific and Industrial Research (CSIR), India for the fellowship. The authors are grateful to Director, CFTRI and Head, Food Microbiology for providing all facilities to carry out this experiment successfully

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Venkateswaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisha, A., Venkateswaran, G. Effect of Culture Variables on Mycelial Arachidonic acid Production by Mortierella alpina . Food Bioprocess Technol 4, 232–240 (2011). https://doi.org/10.1007/s11947-008-0146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0146-y

Keywords

Navigation