Skip to main content
Log in

Optimization of Physiological Growth Conditions for Maximal Gamma-linolenic Acid Production by Cunninghamella blakesleeana-JSK2

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Effects of various cultural conditions on biomass, lipid and Gamma-linolenic acid (GLA) production were investigated in the oleaginous fungus Cunninghamella blakesleeana-JSK2 isolated from soil. The GLA production was influenced by various factors such as growth condition (static and shaken), incubation time, pH, temperature, carbon and nitrogen sources. The results indicated that optimum GLA production (21 %) was obtained when the fungus was grown under shaken condition at 120 rpm for 6 days with optimum pH and temperature of 6 and 28 °C ,respectively. Glucose and potassium nitrate enhanced the GLA production. Urea and sucrose were poor substances for biomass, lipid and GLA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jantii J, Seppala E, Vapaatalo H, Isomaki H (1989) Evening primrose oil and live oil in treatment of rheumatoid arthritis. Clin Rheumatol 8:238–244

    Article  Google Scholar 

  2. Barber AT (1988) Evening primrose oil: a panacea. Pharmaceut J 240:723–725

    Google Scholar 

  3. Horrobin DF (1979) Schizophrenia: reconciliation of the dopamine, prostaglandin and opioid concepts and the role of the pineal. Lancet 1:529–531

    Article  CAS  Google Scholar 

  4. Scott J (1989) Fish and evening primrose oils: gaining medical recognition. Curr Therapeut 45–46

  5. Khoo SK, Munro C, Battisutta D (1990) Evening primrose oil and treatment of premenstrual syndrome. Med J Australia 153:189–192

    CAS  Google Scholar 

  6. Ratledge C, Wynn JP (2002) The biochemistry and Molecular biology of lipid accumulation in oleaginous microorganisms. Adv In Appl Microbiol 51:1–51

    Article  CAS  Google Scholar 

  7. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Biores Tech 100:6118–6120

    Article  CAS  Google Scholar 

  8. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  9. Jangbua P, Laoteng K, Kitsubun P, Nopharatana M, Tongta A (2009) Gamma-linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural by-products. Lett In App Microbiol 49:91–97

    Article  CAS  Google Scholar 

  10. Kristofikova L, Rosenberg M, Vlnova A (1991) Selection of Rhizopus strains for l(+)-lactic acid and gamma-linolenic acid production. Folia Microbiol (Praha) 36:451–455

    Article  CAS  Google Scholar 

  11. Weete JD, Shewmaker F, Gandhi SR (1998) γ-Linolenic acid in zygomycetous fungi: Syzygites megalocarpus. J Am Oil Chem Soc 75:1367–1372

    Article  CAS  Google Scholar 

  12. Booth C (1971) Fungal culture media. In: Booth C (ed) Methods in microbiology, vol 4. Academic Press, London

    Google Scholar 

  13. White TJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  14. Somashekar D, Venkateswaran G, Sambaiah K et al (2002) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Proc Biochem 38:1719–1724

    Article  Google Scholar 

  15. Folch JM, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  16. Savitha J, Wynn JP, Ratledge C (1997) Malic enzyme: its purification and characterization from Mucor circinelloides and occurrence in other oleaginous fungi. W J Microbiol Biotechnol 13:7–9

    Article  CAS  Google Scholar 

  17. Certik M, Slavikova L, Masrnova S et al (2006) Enhancement of nutritional value of cereals with γ-linolenic acid by fungal solid state fermentations. Food Technol Biotechnol 44:75–82

    CAS  Google Scholar 

  18. Jang HD, Lin YY, Yang SS (2005) Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Biores Technol 96:1633–1644

    Article  CAS  Google Scholar 

  19. Yamada H, Shimizu S, Shinmen Y (1987) Production of arachidonic acid by Mortierella elongata IS-5. Agr Biol Chem 51:785–790

    Article  CAS  Google Scholar 

  20. Bajpai PK, Bajpai P (1992) Review: arachidonic acid production by microorganisms. Biotechnol Appl Biochem 15:1–10

    Article  CAS  Google Scholar 

  21. Sumner JL, Morgan ED, Evans HC (1969) The effect of temperature on the fatty acid composition of fungi in the order Mucorales. Can J Microbiol 15:515–520

    Article  CAS  Google Scholar 

  22. Nisha A, Venkateswaran G (2011) Effect of culture variables on mycelial arachidonic acid production by Mortierella alpine. Food Bioproc Technol 4:232–240

    Article  CAS  Google Scholar 

  23. Dyal SD, Bouzidi L, Narine SS (2005) Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Res Inter 38:815–829

    Article  CAS  Google Scholar 

  24. Ahmed SU, Singh SK, Pandey A et al (2006) Effects of various process parameters on the production of γ-linolenic acid in submerged fermentation. Food Technol Biotechnol 44:283–287

    CAS  Google Scholar 

  25. Chen HC, Chang CC (1996) Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol Prog 12:338–341

    Article  CAS  Google Scholar 

  26. Wynn JP, Hamid AA, Ratledge C et al (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    CAS  Google Scholar 

  27. Certik M, Megova J, Horenitzky R (1999) Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. J Gen Appl Microbiol 45:289–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University Grant Council (UGC), India for funding the research project entitled “Lipid profile of endophytic fungi: Identification of suitable strain for the production of commercially important omega fatty acids (EPA & DHA)”. The work was also supported by grant VEGA 1/0975/12 from the Grant Agency of the Ministry of Education, Slovak Republic and by grants APVV-0662-11 and APVV-0294-11 from the Slovak Research and Development Agency, Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janakiraman Savitha.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukrutha, S.K., Adamechova, Z., Rachana, K. et al. Optimization of Physiological Growth Conditions for Maximal Gamma-linolenic Acid Production by Cunninghamella blakesleeana-JSK2. J Am Oil Chem Soc 91, 1507–1513 (2014). https://doi.org/10.1007/s11746-014-2507-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2507-1

Keywords

Navigation