Skip to main content

Advertisement

Log in

Update on Toxic Neuropathies

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

Toxic neuropathies are an important preventable and treatable form of peripheral neuropathy. While many forms of toxic neuropathies have been recognized for decades, an updated review is provided to increase vigilant in this area of neurology. A literature review was conducted to gather recent information about toxic neuropathies, which included the causes, clinical findings, and treatment options in these conditions.

Recent Findings

Toxic neuropathies continue to cause significant morbidity throughout the world and the causative agents, particularly with regards to medications, do not appear to be diminishing. A wide variety of causes of toxic neuropathies exist, which include alcohol, industrial chemicals, biotoxins, and medications. Unfortunately, no breakthrough treatments have been developed and prevention and symptom management remain the standard of care.

Summary

A detailed medication, occupational, and hobby exposure history is critical to identifying toxic neuropathies. Increased research is warranted to identify mechanisms of neurotoxic susceptibility and potential common pathomechanistic pathways for treatment across diverse toxic neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Grisold W, Carozzi VA. Toxicity in peripheral nerves: an overview. Toxics. 2021;9(9).

  2. Staff NP. Peripheral neuropathies due to vitamin and mineral deficiencies, toxins, and medications. Continuum (Minneap Minn). 2020;26(5):1280–98.

    Google Scholar 

  3. • Julian T, Glascow N, Syeed R, Zis P. Alcohol-related peripheral neuropathy: a systematic review and meta-analysis. J Neurol. 2019;266(12):2907–19. This systematic review focuses on the prevalence, characteristics and risk factors of peripheral neuropathy due to chronic alcohol abuse and discusses management strategies.

  4. Koike H, Iijima M, Sugiura M, Mori K, Hattori N, Ito H, et al. Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Ann Neurol. 2003;54(1):19–29.

    Article  PubMed  Google Scholar 

  5. Katona I, Weis J. Diseases of the peripheral nerves. Handb Clin Neurol. 2017;145:453–74.

    Article  PubMed  Google Scholar 

  6. Hammoud N, Jimenez-Shahed J. Chronic neurologic effects of alcohol. Clin Liver Dis. 2019;23(1):141–55.

    Article  PubMed  Google Scholar 

  7. Hawley RJ, Kurtzke JF, Armbrustmacher VW, Saini N, Manz H. The course of alcoholic-nutritional peripheral neuropathy. Acta Neurol Scand. 1982;66(5):582–9.

    Article  CAS  PubMed  Google Scholar 

  8. Peters TJ, Kotowicz J, Nyka W, Kozubski W, Kuznetsov V, Vanderbist F, et al. Treatment of alcoholic polyneuropathy with vitamin B complex: a randomised controlled trial. Alcohol Alcohol. 2006;41(6):636–42.

    Article  CAS  PubMed  Google Scholar 

  9. Karam C, Dyck PJ. Toxic neuropathies. Semin Neurol. 2015;35(4):448–57.

    Article  PubMed  Google Scholar 

  10. Pearn J. Neurology of ciguatera. J Neurol Neurosurg Psychiatry. 2001;70(1):4–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butera R, Prockop LD, Buonocore M, Locatelli C, Gandini C, Manzo L. Mild ciguatera poisoning: case reports with neurophysiological evaluations. Muscle Nerve. 2000;23(10):1598–603.

    Article  CAS  PubMed  Google Scholar 

  12. Fernández-Fígares M, Fernández V, Postigo MJ, Feron P. Acute paralysis after seafood ingestion. Neurophysiol Clin. 2013;43(5–6):299–302.

    Article  PubMed  Google Scholar 

  13. Salazar-Leal ME, Flores MS, Sepulveda-Saavedra J, Romero-Diaz VJ, Becerra-Verdin EM, Tamez-Rodriguez VA, et al. An experimental model of peripheral neuropathy induced in rats by Karwinskia humboldtiana (buckthorn) fruit. J Peripher Nerv Syst. 2006;11(3):253–61.

    Article  PubMed  Google Scholar 

  14. Grattan-Smith PJ, Morris JG, Johnston HM, Yiannikas C, Malik R, Russell R, et al. Clinical and neurophysiological features of tick paralysis. Brain. 1997;120(Pt 11):1975–87.

    Article  PubMed  Google Scholar 

  15. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review J Agric Food Chem. 2003;51(16):4504–26.

    Article  CAS  PubMed  Google Scholar 

  16. Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50(17):4998–5006.

    Article  CAS  PubMed  Google Scholar 

  17. • Bin-Jumah M, Abdel-Fattah AM, Saied EM, El-Seedi HR, Abdel-Daim MM. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environ Sci Pollut Res Int. 2021;28(11):13031–46. This review summarizes the literature about manifestations, mechanisms and potential treatment modalities for acrylamide-induced peripheral neuropathy.

  18. He FS, Zhang SL. Effects of allyl chloride on occupationally exposed subjects. Scand J Work Environ Health. 1985;11(Suppl 4):43–5.

    CAS  PubMed  Google Scholar 

  19. Berger AR, Schaumburg HH. Human Toxic Neuropathy Caused by Industrial Agents. In Peripheral Neuropathy. Elsevier Inc. 2005;2:2505–25. https://doi.org/10.1016/B978-0-7216-9491-7.50115-0.

  20. Day CHD. Encyclopedia of toxicology (second edition). 2005.

  21. Sosa NR, Rodriguez GM, Schier JG, Sejvar JJ. Clinical, laboratory, diagnostic, and histopathologic features of diethylene glycol poisoning—Panama, 2006. Ann Emerg Med. 2014;64(1):38–47.

    Article  PubMed  Google Scholar 

  22. Reddy NJ, Sudini M, Lewis LD. Delayed neurological sequelae from ethylene glycol, diethylene glycol and methanol poisonings. Clin Toxicol (Phila). 2010;48(10):967–73.

    Article  CAS  Google Scholar 

  23. Conklin L, Sejvar JJ, Kieszak S, Sabogal R, Sanchez C, Flanders D, et al. Long-term renal and neurologic outcomes among survivors of diethylene glycol poisoning. JAMA Intern Med. 2014;174(6):912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bates MN, Pope K, So YT, Liu S, Eisen EA, Hammond SK. Hexane exposure and persistent peripheral neuropathy in automotive technicians. Neurotoxicology. 2019;75:24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spencer PS, Schaumburg HH, Sabri MI, Veronesi B. The enlarging view of hexacarbon neurotoxicity. Crit Rev Toxicol. 1980;7(4):279–356.

    Article  CAS  PubMed  Google Scholar 

  26. Spencer PS, Schaumburg HH. Ultrastructural studies of the dying-back process. IV. Differential vulnerability of PNS and CNS fibers in experimental central-peripheral distal axonopathies. J Neuropathol Exp Neurol. 1977;36(2):300–20.

  27. Kutlu G, Gomceli YB, Sonmez T, Inan LE. Peripheral neuropathy and visual evoked potential changes in workers exposed to n-hexane. J Clin Neurosci. 2009;16(10):1296–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chen S, Wang Z. Electrophysiological follow-up of patients with chronic peripheral neuropathy induced by occupational intoxication with n-hexane. Cell Biochem Biophys. 2014;70(1):579–85.

    Article  CAS  PubMed  Google Scholar 

  29. Craig PH, Barth ML. Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature. J Toxicol Environ Health B Crit Rev. 1999;2(4):281–300.

    Article  CAS  PubMed  Google Scholar 

  30. Winder C, Balouet JC. The toxicity of commercial jet oils. Environ Res. 2002;89(2):146–64.

    Article  CAS  PubMed  Google Scholar 

  31. Singh S, Sharma N. Neurological syndromes following organophosphate poisoning. Neurol India. 2000;48(4):308–13.

    CAS  PubMed  Google Scholar 

  32. Wang P, Yang M, Jiang L, Wu YJ. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology. 2019;148:31–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi S, Okubo R, Ugawa Y. Delayed polyneuropathy induced by organophosphate poisoning. Intern Med. 2017;56(14):1903–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. • Camargo CRS, Schoueri JHM, Alves BDCA, Veiga GRLD, Fonseca FLA, Bacci MR. Uremic neuropathy: an overview of the current literature. Rev Assoc Med Bras (1992). 2019;65(3):469–74. This review summarizes the latest findings and clinical characteristics of uremic neuropathy.

  35. Aggarwal HK, Sood S, Jain D, Kaverappa V, Yadav S. Evaluation of spectrum of peripheral neuropathy in predialysis patients with chronic kidney disease. Ren Fail. 2013;35(10):1323–9.

    Article  CAS  PubMed  Google Scholar 

  36. Krishnan AV, Kiernan MC. Neurological complications of chronic kidney disease. Nat Rev Neurol. 2009;5(10):542–51.

    Article  CAS  PubMed  Google Scholar 

  37. Ghazan-Shahi S, Koh TJ, Chan CT. Impact of nocturnal hemodialysis on peripheral uremic neuropathy. BMC Nephrol. 2015;16:134.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Said G. Uremic neuropathy. Handb Clin Neurol. 2013;115:607–12.

    Article  PubMed  Google Scholar 

  39. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–82.

    Article  PubMed  Google Scholar 

  40. Festa RA, Thiele DJ. Copper: an essential metal in biology. Curr Biol. 2011;21(21):R877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008;82(8):493–512.

    Article  CAS  PubMed  Google Scholar 

  42. Genuis SJ, Schwalfenberg G, Siy AK, Rodushkin I. Toxic element contamination of natural health products and pharmaceutical preparations. PLoS One. 2012;7(11):e49676.

  43. Saper RB, Phillips RS, Sehgal A, Khouri N, Davis RB, Paquin J, et al. Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the Internet. JAMA. 2008;300(8):915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koszewicz M, Markowska K, Waliszewska-Prosol M, Poreba R, Gac P, Szymanska-Chabowska A, et al. The impact of chronic co-exposure to different heavy metals on small fibers of peripheral nerves. A study of metal industry workers. J Occup Med Toxicol. 2021;16(1):12.

  45. Rubens O, Logina I, Kravale I, Eglîte M, Donaghy M. Peripheral neuropathy in chronic occupational inorganic lead exposure: a clinical and electrophysiological study. J Neurol Neurosurg Psychiatry. 2001;71(2):200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomson RM, Parry GJ. Neuropathies associated with excessive exposure to lead. Muscle Nerve. 2006;33(6):732–41.

    Article  CAS  PubMed  Google Scholar 

  47. Krieg EF, Chrislip DW, Brightwell WS. A meta-analysis of studies investigating the effects of lead exposure on nerve conduction. Arch Toxicol. 2008;82(8):531–42.

    Article  CAS  PubMed  Google Scholar 

  48. Sadeghniiat-Haghighi K, Saraie M, Ghasemi M, Izadi N, Chavoshi F, Khajehmehrizi A. Assessment of peripheral neuropathy in male hospitalized patients with lead toxicity in Iran. J Res Med Sci. 2013;18(1):6–9.

    PubMed  PubMed Central  Google Scholar 

  49. Misra UK, Kalita J. Toxic neuropathies. Neurol India. 2009;57(6):697–705.

    Article  PubMed  Google Scholar 

  50. Staff NP, Windebank AJ. Peripheral neuropathy due to vitamin deficiency, toxins, and medications. Continuum (Minneap Minn). 2014;20(5 Peripheral Nervous System Disorders):1293–306.

  51. Rubin R, Strayer D. Environmental and nutritional pathology. Rubin's Pathology: Clinicopathologic Foundations of Medicine 5th ed: Lippincott Williams & Wilkins 2008.

  52. Othman L, Nafadi A, Alkhalid SH, Mazraani N. Arsenic poisoning due to high consumption of canned sardines in Jeddah, Saudi Arabia. Cureus. 2021;13(1):e12780.

  53. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valappil AV, Mammen A. Subacute arsenic neuropathy: clinical and electrophysiological observations. J Neurosci Rural Pract. 2019;10(3):529–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Murphy MJ, Lyon LW, Taylor JW. Subacute arsenic neuropathy: clinical and electrophysiological observations. J Neurol Neurosurg Psychiatry. 1981;44(10):896–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Halatek T, Sinczuk-Walczak H, Rabieh S, Wasowicz W. Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol Appl Pharmacol. 2009;239(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  57. Sharma A, Kumar S. Arsenic exposure with reference to neurological impairment: an overview. Rev Environ Health. 2019;34(4):403–14.

    Article  CAS  PubMed  Google Scholar 

  58. Guha Mazumder D, Dasgupta UB. Chronic arsenic toxicity: studies in West Bengal. India Kaohsiung J Med Sci. 2011;27(9):360–70.

    Article  CAS  PubMed  Google Scholar 

  59. Ishii N, Mochizuki H, Ebihara Y, Shiomi K, Nakazato M. Clinical symptoms, neurological signs, and electrophysiological findings in surviving residents with probable arsenic exposure in Toroku. Japan Arch Environ Contam Toxicol. 2018;75(4):521–9.

    Article  CAS  PubMed  Google Scholar 

  60. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang D, Shimoda Y, Wang S, Wang Z, Liu J, Liu X, et al. Total arsenic and speciation analysis of saliva and urine samples from individuals living in a chronic arsenicosis area in China. Environ Health Prev Med. 2017;22(1):45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Fujino Y, Guo X, Shirane K, Liu J, Wu K, Miyatake M, et al. Arsenic in drinking water and peripheral nerve conduction velocity among residents of a chronically arsenic-affected area in Inner Mongolia. J Epidemiol. 2006;16(5):207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health. 2012;2012:460508.

  64. Berlin M, Zalups R, Fowler B. Handbook on the toxicology of metals. 3rd ed: Elsevier; 2007.

  65. Aitio A, Valkonen S, Kivistö H, Yrjänheikki E. Effect of occupational mercury exposure on plasma lysosomal hydrolases. Int Arch Occup Environ Health. 1983;53(2):139–47.

    Article  CAS  PubMed  Google Scholar 

  66. Yawei S, Jianhai L, Junxiu Z, Xiaobo P, Zewu Q. Epidemiology, clinical presentation, treatment, and follow-up of chronic mercury poisoning in China: a retrospective analysis. BMC Pharmacol Toxicol. 2021;22(1):25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Levine SP, Cavender GD, Langolf GD, Albers JW. Elemental mercury exposure: peripheral neurotoxicity. Br J Ind Med. 1982;39(2):136–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Berlin M, Fazackerley J, Nordberg G. The uptake of mercury in the brains of mammals exposed to mercury vapor and to mercuric salts. Arch Environ Health. 1969;18(5):719–29.

    Article  CAS  PubMed  Google Scholar 

  69. Berlin M, Gibson S. Renal uptake, excretion, and retention of mercury. I. A study in the rabbit during infusion of mercuric chloride. Arch Environ Health. 1963;6:617–25.

  70. Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, et al. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol. 2005;43(7):1037–45.

    Article  PubMed  CAS  Google Scholar 

  71. Tsai YT, Huang CC, Kuo HC, Wang HM, Shen WS, Shih TS, et al. Central nervous system effects in acute thallium poisoning. Neurotoxicology. 2006;27(2):291–5.

    Article  CAS  PubMed  Google Scholar 

  72. Osorio-Rico L, Santamaria A, Galván-Arzate S. Thallium toxicity: general issues, neurological symptoms, and neurotoxic mechanisms. Adv Neurobiol. 2017;18:345–53.

    Article  PubMed  Google Scholar 

  73. Wang TT, Wen B, Yu XN, Ji ZG, Sun YY, Li Y, et al. Early diagnosis, treatment, and outcomes of five patients with acute thallium poisoning. World J Clin Cases. 2021;9(19):5082–91.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Naddaf E, Dyck PJ, Jannetto PJ, Murray DL, Dyck PJB. Peripheral neuropathy associated with silver toxicity. Neurology. 2019;92(10):481–3.

    Article  PubMed  Google Scholar 

  75. Stepien KM, Morris R, Brown S, Taylor A, Morgan L. Unintentional silver intoxication following self-medication: an unusual case of corticobasal degeneration. Ann Clin Biochem. 2009;46(Pt 6):520–2.

    Article  PubMed  Google Scholar 

  76. Bradberry SM, Sheehan TM, Barraclough CR, Vale JA. DMPS can reverse the features of severe mercury vapor-induced neurological damage. Clin Toxicol (Phila). 2009;47(9):894–8.

    Article  CAS  Google Scholar 

  77. Aposhian HV. DMSA and DMPS—water soluble antidotes for heavy metal poisoning. Annu Rev Pharmacol Toxicol. 1983;23:193–215.

    Article  CAS  PubMed  Google Scholar 

  78. Bradberry S, Sheehan T, Vale A. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. QJM. 2009;102(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  79. Sauder P, Livardjani F, Jaeger A, Kopferschmitt J, Heimburger R, Waller C, et al. Acute mercury chloride intoxication. Effects of hemodialysis and plasma exchange on mercury kinetic. J Toxicol Clin Toxicol. 1988;26(3–4):189–97.

  80. Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7(7):2745–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhadauria S, Flora SJ. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats. Cell Biol Toxicol. 2007;23(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  82. Arslan-Acaroz D, Zemheri F, Demirel HH, Kucukkurt I, Ince S, Eryavuz A. In vivo assessment of polydatin, a natural polyphenol compound, on arsenic-induced free radical overproduction, gene expression, and genotoxicity. Environ Sci Pollut Res Int. 2018;25(3):2614–22.

    Article  CAS  PubMed  Google Scholar 

  83. Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE. Natural antidotes and management of metal toxicity. Environ Sci Pollut Res Int. 2019;26(18):18032–52.

    Article  CAS  PubMed  Google Scholar 

  84. Russi G, Marson P. Urgent plasma exchange: how, where and when. Blood Transfus. 2011;9(4):356–61.

    PubMed  PubMed Central  Google Scholar 

  85. Staff NP, Dyck PJB. On the association between fluoroquinolones and neuropathy. JAMA Neurol. 2019;76(7):753–4.

    Article  PubMed  Google Scholar 

  86. Saroha D, Garg D, Singh AK, Dhamija RK. Irreversible neuropathy in extremely-drug resistant tuberculosis: an unfortunate clinical conundrum. Indian J Tuberc. 2020;67(3):389–92.

    Article  PubMed  Google Scholar 

  87. Nair VS, LeBrun M, Kass I. Peripheral neuropathy associated with ethambutol. Chest. 1980;77(1):98–100.

    Article  CAS  PubMed  Google Scholar 

  88. Mafukidze AT, Calnan M, Furin J. Peripheral neuropathy in persons with tuberculosis. J Clin Tuberc Other Mycobact Dis. 2016;2:5–11.

    Article  PubMed  Google Scholar 

  89. Kishor K, Dhasmana N, Kamble SS, Sahu RK. Linezolid induced adverse drug reactions — an update. Curr Drug Metab. 2015;16(7):553–9.

    Article  CAS  PubMed  Google Scholar 

  90. Agyeman AA, Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2016;15(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Aoun M, Jacquy C, Debusscher L, Bron D, Lehert M, Noel P, et al. Peripheral neuropathy associated with fluoroquinolones. Lancet. 1992;340(8811):127.

    Article  CAS  PubMed  Google Scholar 

  92. • Morales D, Pacurariu A, Slattery J, Pinheiro L, McGettigan P, Kurz X. Association between peripheral neuropathy and exposure to oral fluoroquinolone or amoxicillin-clavulanate therapy. JAMA Neurol. 2019;76(7):827–33. This large nested case-control study established an increased risk, albeit small, for neuropathy following fluoroquinolone use.

  93. Etminan M, Brophy JM, Samii A. Oral fluoroquinolone use and risk of peripheral neuropathy: a pharmacoepidemiologic study. Neurology. 2014;83(14):1261–3.

    Article  CAS  PubMed  Google Scholar 

  94. Baggio D, Ananda-Rajah MR. Fluoroquinolone antibiotics and adverse events. Aust Prescr. 2021;44(5):161–4.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Koller WC, Gehlmann LK, Malkinson FD, Davis FA. Dapsone-induced peripheral neuropathy. Arch Neurol. 1977;34(10):644–6.

    Article  CAS  PubMed  Google Scholar 

  96. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014;306(2):103–24.

    Article  CAS  PubMed  Google Scholar 

  97. • Goolsby TA, Jakeman B, Gaynes RP. Clinical relevance of metronidazole and peripheral neuropathy: a systematic review of the literature. Int J Antimicrob Agents. 2018;51(3):319–25. This systematic review summarizes and evaluates the literature on metronidazole induced peripheral neuropathy.

  98. Kuriyama A, Jackson JL, Doi A, Kamiya T. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34(6):241–7.

  99. England JD, Gronseth GS, Franklin G, Miller RG, Asbury AK, Carter GT, et al. Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2005;64(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  100. Hao S. The Molecular and pharmacological mechanisms of HIV-related neuropathic pain. Curr Neuropharmacol. 2013;11(5):499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaku M, Simpson DM. HIV, antiretrovirals, and peripheral neuropathy: a moving target. Muscle Nerve. 2018;57(3):347–9.

    Article  PubMed  Google Scholar 

  102. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol. 2010;67(5):552–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Winias S, Radithia D, Savitri ED. Neuropathy complication of antiretroviral therapy in HIV/AIDS patients. Oral Dis. 2020;26(Suppl 1):149–52.

    Article  PubMed  Google Scholar 

  104. Mukoma JN, Matheri JM, Tawa N. Prevalence and clinical characteristics associated with peripheral neuropathy amongst persons on HAART in Busia County, Kenya. S Afr J Physiother. 2020;76(1):1430.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ye H, Du X, Hua Q. Effects of voluntary exercise on antiretroviral therapy-induced neuropathic pain in mice. J Physiol Sci. 2018;68(4):521–30.

    Article  PubMed  Google Scholar 

  106. • Smith EML, Kuisell C, Cho Y, Kanzawa-Lee GA, Gilchrist LS, Park SB, et al. Characteristics and patterns of pediatric chemotherapy-induced peripheral neuropathy: a systematic review. Cancer Treat Res Commun. 2021;28:100420. This large systematic review describes chemotherapy-induced neuropathy in children.

  107. Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies—a growing problem for patients and health care providers. Brain Behav. 2017;7(1):e00558.

  108. Beijers AJ, Jongen JL, Vreugdenhil G. Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth J Med. 2012;70(1):18–25.

    CAS  PubMed  Google Scholar 

  109. Argyriou AA, Cavaletti G, Briani C, Velasco R, Bruna J, Campagnolo M, et al. Clinical pattern and associations of oxaliplatin acute neurotoxicity: a prospective study in 170 patients with colorectal cancer. Cancer. 2013;119(2):438–44.

    Article  CAS  PubMed  Google Scholar 

  110. Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, et al. Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment. Oncol Ther. 2021;9(2):385–450.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol. 2020;324:113121.

  112. da Costa R, Passos GF, Quintão NLM, Fernandes ES, Maia JRLC, Campos MM, et al. Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol. 2020;177(14):3127–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mustafa Ali M, Moeller M, Rybicki L, Moore HCF. Long-term peripheral neuropathy symptoms in breast cancer survivors. Breast Cancer Res Treat. 2017;166(2):519–26.

    Article  PubMed  Google Scholar 

  114. Bandos H, Melnikow J, Rivera DR, Swain SM, Sturtz K, Fehrenbacher L, et al. Long-term peripheral neuropathy in breast cancer patients treated with adjuvant chemotherapy: NRG oncology/NSABP B-30. J Natl Cancer Inst. 2018;110(2).

  115. de la Morena BP, Conesa M, González-Billalabeitia E, Urrego E, García-Garre E, García-Martínez E, et al. Delayed recovery and increased severity of paclitaxel-induced peripheral neuropathy in patients with diabetes. J Natl Compr Canc Netw. 2015;13(4):417–23.

    Article  Google Scholar 

  116. Madsen ML, Due H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kavcic M, Koritnik B, Krzan M, Velikonja O, Prelog T, Stefanovic M, et al. Electrophysiological studies to detect peripheral neuropathy in children treated with vincristine. J Pediatr Hematol Oncol. 2017;39(4):266–71.

    Article  CAS  PubMed  Google Scholar 

  118. van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine-induced peripheral neuropathy in children with cancer: a systematic review. Crit Rev Oncol Hematol. 2017;114:114–30.

    Article  PubMed  Google Scholar 

  119. Triarico S, Romano A, Attinà G, Capozza MA, Maurizi P, Mastrangelo S, et al. Vincristine-induced peripheral neuropathy (VIPN) in pediatric tumors: mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci. 2021;22(8).

  120. Thawani SP, Tanji K, De Sousa EA, Weimer LH, Brannagan TH. Bortezomib-associated demyelinating neuropathy—clinical and pathologic features. J Clin Neuromuscul Dis. 2015;16(4):202–9.

    Article  PubMed  Google Scholar 

  121. Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112(5):1593–9.

    Article  CAS  PubMed  Google Scholar 

  122. Ravaglia S, Corso A, Piccolo G, Lozza A, Alfonsi E, Mangiacavalli S, et al. Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol. 2008;119(11):2507–12.

    Article  CAS  PubMed  Google Scholar 

  123. Chaudhry V, Cornblath DR, Corse A, Freimer M. Simmons-O’Brien E, Vogelsang G. Thalidomide-induced neuropathy. Neurology. 2002;59(12):1872–5.

    Article  CAS  PubMed  Google Scholar 

  124. Gibbels E, Scheid W, Wieck HH, Kinzel W. [Thalidomide neuropathy in the late stage. A clinical documentation]. Fortschr Neurol Psychiatr Grenzgeb. 1973;41(7):378–417.

  125. Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24(Suppl 2):S63–73.

    CAS  PubMed  Google Scholar 

  126. Haugh AM, Probasco JC, Johnson DB. Neurologic complications of immune checkpoint inhibitors. Expert Opin Drug Saf. 2020;19(4):479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. • Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff NP, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74(10):1216–22. This is an early case series that describes a cohort of patients that developed neurological complications of check-point inhibitors.

  128. Chen X, Haggiagi A, Tzatha E, DeAngelis LM, Santomasso B. Electrophysiological findings in immune checkpoint inhibitor-related peripheral neuropathy. Clin Neurophysiol. 2019;130(8):1440–5.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dubey D, David WS, Amato AA, Reynolds KL, Clement NF, Chute DF, et al. Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology. 2019;93(11):e1093–103.

    Article  CAS  PubMed  Google Scholar 

  130. Pan PC, Haggiagi A. Neurologic immune-related adverse events associated with immune checkpoint inhibition. Curr Oncol Rep. 2019;21(12):108.

    Article  PubMed  Google Scholar 

  131. Bao L, Li Q, Chen H, Zhang R, Shi H, Cui G. Clinical, electrophysiological and radiological features of nitrous oxide-induced neurological disorders. Neuropsychiatr Dis Treat. 2020;16:977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Choi C, Kim T, Park KD, Lim OK, Lee JK. Subacute combined degeneration caused by nitrous oxide intoxication: a report of two cases. Ann Rehabil Med. 2019;43(4):530–4.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Neveu J, Perelman S, Suisse G, Monpoux F. Severe hyperhomocysteinemia and peripheral neuropathy as side effects of nitrous oxide in two patients with sickle cell disease. Arch Pediatr. 2019;26(7):419–21.

    Article  CAS  PubMed  Google Scholar 

  134. Chen T, Zhong N, Jiang H, Zhao M, Chen Z, Sun H. Neuropsychiatric symptoms induced by large doses of nitrous oxide inhalation: a case report. Shanghai Arch Psychiatry. 2018;30(1):56–9.

    PubMed  Google Scholar 

  135. Edigin E, Ajiboye O, Nathani A. Nitrous oxide-induced B12 deficiency presenting with myeloneuropathy. Cureus. 2019;11(8):e5331.

  136. Kopsky DJ, Keppel Hesselink JM. Topical phenytoin for the treatment of neuropathic pain. J Pain Res. 2017;10:469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kopsky DJ, Vrancken AFJE, Keppel Hesselink JM, van Eijk RPA, Notermans NC. Usefulness of a double-blind placebo-controlled response test to demonstrate rapid onset analgesia with phenytoin 10% cream in polyneuropathy. J Pain Res. 2020;13:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Keppel Hesselink JM, Kopsky DJ. Phenytoin: neuroprotection or neurotoxicity? Neurol Sci. 2017;38(6):1137–41.

    Article  PubMed  Google Scholar 

  139. Hadtstein F, Vrolijk M. Vitamin B-6-induced neuropathy: exploring the mechanisms of pyridoxine toxicity. Adv Nutr. 2021;12(5):1911–29.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics. 2009;10:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, et al. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N Engl J Med. 1983;309(8):445–8.

Download references

Funding

N. P. S. receives funding from National Institutes of Health (R01 CA 211887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan P. Staff MD, PhD.

Ethics declarations

Conflict of Interest

Jannik Peters declares that he has no conflict of interest. Nathan P. Staff declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, J., Staff, N.P. Update on Toxic Neuropathies. Curr Treat Options Neurol 24, 203–216 (2022). https://doi.org/10.1007/s11940-022-00716-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-022-00716-5

Keywords

Navigation