Skip to main content

Advertisement

Log in

Novel Systemic Treatments for Brain Metastases From Lung Cancer

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Brain metastases are frequent complication of lung cancer and are associated with poor prognosis. Patients with brain metastases secondary to lung cancer have traditionally been managed with surgery and radiation with limited role for systemic chemotherapy. In the past decade, however, this paradigm has shifted largely due to the advent of targeted therapies and immunotherapies, both of which have demonstrated efficacy in the treatment of brain metastases and extracranial disease.

Recent findings

While patients with brain metastases secondary to lung cancer have historically been excluded from trials, recent data suggest efficacy of novel targeted therapies and immunotherapies in these patients. In fact, there are multiple ongoing trials to further evaluate these therapies in this patient profile.

Summary

Targeted therapies and immunotherapies have the potential to improve outcomes in patients with brain metastases secondary to lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. American Cancer Society, Cancer facts & figures 2017.

  2. Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94(10):2698–705.

    Article  PubMed  Google Scholar 

  3. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol. 2004;22(14):2865–72. https://doi.org/10.1200/jco.2004.12.149.

    Article  PubMed  Google Scholar 

  4. Davey P: Brain metastases: treatment options to improve outcomes. CNS Drugs 16;2002;325–338.

    Article  CAS  PubMed  Google Scholar 

  5. Kromer, Courtney, Jordan Xu, Quinn T. Ostrom, Haley Gittleman, Carol Kruchko, Raymond Sawaya, and Jill S. Barnholtz-Sloan. Estimating the annual frequency of synchronous brain metastasis in the United States 2010–2013: a population-based study. J Neuro-Oncol 134(1);2017:55–64. https://doi.org/10.1007/s11060-017-2516-7.

    Article  PubMed  Google Scholar 

  6. Howlader N, Noone AM, Krapcho M, et al., editors. SEER Cancer Statistics Review, 1975–2008. Bethesda (MD): National Cancer Institute; 2010. Available at: http://seer.cancer.gov/csr/1975_2008/, based on November 2010 SEER data submission, posted to the SEER web site, 2011.

  7. Kohler B, Ward E, McCarthy B, et al. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103:1–23.

    Article  Google Scholar 

  8. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359(13):1367–80.

    Article  CAS  PubMed  Google Scholar 

  9. Sørense J, Hansen H, Hansen M, Dombernowsky P. Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol. 1988;6:1474–80.

    Article  Google Scholar 

  10. Castrucci W, Knisely J. An update on the treatment of CNS metastases in small cell lung cancer. Cancer J. 2008;14:138–46.

    Article  PubMed  Google Scholar 

  11. Venur VA, Ahluwalia MS. Prognostic scores for brain metastasis patients: use in clinical practice and trial design. Chin Clin Oncol. 2015;4(2):18. https://doi.org/10.3978/j.issn.2304-3865.2015.06.01.

    Article  PubMed  Google Scholar 

  12. SperdutoPW, Chao ST, Sneed PK, LuoX, Suh J, Roberge D, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77(3):655–61. https://doi.org/10.1016/j.ijrobp.2009.08.025.

    Article  Google Scholar 

  13. Sperduto PW, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol. 2017;3(6):827–31. https://doi.org/10.1001/jamaoncol.2016.3834.

    Article  PubMed  Google Scholar 

  14. Balasubramanian SK, Alva Venur V, Chao ST, et al. Impact of EGFR and ALK mutation on the outcomes of non-small cell lung cancer (NSCLC) patients with brain metastases. J Clin Oncol. 2016;34(15_suppl):2005. https://doi.org/10.1200/JCO.2016.34.15_suppl.2005.

    Article  Google Scholar 

  15. Nonaka H, Akima M, Hatori T, et al. The microvascular of the cerebral white matter: arteries of the subcortical white matter. J Neuropathol Exp Neurol. 2003;62:154–61.

    Article  PubMed  Google Scholar 

  16. Porter AT, David M. Palliative care for bone, spinal cord, brain and liver metastases. In: Gunderson LL, Tepper JE, editors. Clinical radiation oncology. Philadelphia: Elsevier; 2007. p. 437–55.

    Google Scholar 

  17. Narayana A, Liebel SA. Primary and metastatic brain tumors. In: Liebel SA, Phillips TL, editors. Textbook of radiation oncology. Philadelphia: Elsevier; 2004. p. 463–95.

    Google Scholar 

  18. Hwang TL, Close TP, Grego JM, et al. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer. 1996;77:1551–5.

    Article  CAS  PubMed  Google Scholar 

  19. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ebben D, Johnathan, You M. Brain metastasis in lung cancer: building a molecular and systems-level understanding to improve outcomes. Int J Biochem Cell Biol. 2016;78:P14. https://doi.org/10.1016/j.biocel.2016.07.025.

    Article  CAS  Google Scholar 

  21. Fidler IJ. The biology of brain metastasis challenges for therapy. Cancer J. 2015;21(4):284–93.

    Article  CAS  PubMed  Google Scholar 

  22. Ciminera AK, Jandial R, Termini J. Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis. 2017;34(6–7):401–10. https://doi.org/10.1007/s10585-017-9864-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boroughs LK, De Berardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johansson BB. The physiology of the blood-brain barrier. Adv Exp Med Biol. 1990;274:25–39.

    Article  CAS  PubMed  Google Scholar 

  25. Gregoire N. The blood-brain barrier. J Neuroradiol. 1989;16:238–50.

    CAS  PubMed  Google Scholar 

  26. Felgenhauer K. The blood-brain barrier redefined. J Neurol. 1986;233:193–4.

    Article  CAS  PubMed  Google Scholar 

  27. Shapiro WR, Shapiro JR. Principles of brain tumor chemotherapy. Semin Oncol. 1986;13:56–69.

    CAS  PubMed  Google Scholar 

  28. Iannotti F, Fleschi C, Alfano B, et al. Simplified, noninvasive PET measurement of blood brain barrier permeability. J Comput Assist Tomogr. 1987;11:390–7.

    Article  CAS  PubMed  Google Scholar 

  29. Frong D, Israel O, Kohn S, et al. The blood-tissue barrier of human brain tumors: correlation of scintigraphic and ultrastructural findings (concise communication). J Nucl Med. 1984;25:461–5.

    Google Scholar 

  30. Lin Q, Balasubramanian K, Fan D, et al. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction channels. Neoplasia. 2010;12:748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lekic M, Kovac V, Triller N, Knez L, Sadikov A, Cufer T. Outcome of small cell lung cancer (SCLC) patients with brain metastases in a routine clinical setting. Radiol Oncol. 2012;46:54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sabari JK, Paik PK. Relevance of genetic alterations in squamous and small cell lung cancer. Ann Transl Med. 2017;5(18):373. https://doi.org/10.21037/atm.2017.06.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: applications for current and future therapies. J Clin Oncol. 2013;31(8):1039–49. https://doi.org/10.1200/jco.2012.45.3753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. (2014);311:1998–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shonka N, Venur VA, Ahluwalia MS. Targeted treatment of brain metastases. Curr Neurol Neurosci Rep. 2017;17(4) https://doi.org/10.1007/s11910-017-0741-2.

  36. Welsh JW, Komaki R, Amini A, et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J Clin Oncol. 2013;31:895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iuchi T, Shingyoji M, Sakaida T, Hatano K, Nagano O, Itakura M, et al. Phase II trial of gefitinib alone without radiaton therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung cancer (Amsterdam, Netherlands). 2013;82(2):282–7. https://doi.org/10.1016/j.lungcan.2013.08.016.

    Article  CAS  Google Scholar 

  38. Wu YL, Zhou C, Cheng Y, et al. Erlotinib as second-line treatment in patients with advanced non-small-cell lung cancer and asymptomatic brain metastases: a phase II study (CTONG-0803). Ann Oncol. 2013;24(4):993–9. https://doi.org/10.1093/annonc/mds529.

    Article  PubMed  Google Scholar 

  39. Lee SM, Lewanski CR, Counsell N, et al. Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Natl Cancer Inst. 2014;106:dju151.

    PubMed  PubMed Central  Google Scholar 

  40. •• Yang JJ, Zhou C, Huang Y, et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised controlled trial. Lancet Respir Med. 2017;5(9):707–16. https://doi.org/10.1016/S2213-2600(17)30262-X. In this phase III, multicenter clinical trial in China, icotinib showed longer intracranial PFS as compared to WBRT plus chemotherapy in patients with EGFR-mutant NSCLC.

    Article  CAS  PubMed  Google Scholar 

  41. •• Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2016; https://doi.org/10.1056/NEJMoa1612674. In this phase III clinical trial, osimertinib demonstrated better efficacy as compared to standard chemotherapy in patients with EGFR-mutant brain metastases in non-small cell lung cancer.

    Article  CAS  PubMed  Google Scholar 

  42. •• Solomon BJ, Cappuzzo F, Felip E, et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. J Clin Oncol. 2016;34(24):2858–65. In this phase III PROFILE 1014 study, crizotinib showed better intracranial activity in patients with ALK-positive NSCLC brain metastases as compared to standard chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  43. •• Crino L, Ahn MJ, De Marinis F, Groen HJ, Wakelee H, Hida T, et al. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol. 2016;34(24):2866–73. https://doi.org/10.1200/JCO.2015.65.5936. This phase II study included patients ALK-positive NSCLC, previously treated with chemotherapy and crizotinib. Ceritinib demonstrated durable intracranial response in patients with brain metastases.

    Article  PubMed  Google Scholar 

  44. •• Peters S, Camidge DR, Shaw AT, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38. https://doi.org/10.1056/NEJMoa1704795. In this phase III clinical trial, alectinib demonstrated longer PFS as compared to crizotinib in patients with ALK positive NSCLC brain metastases.

    Article  CAS  PubMed  Google Scholar 

  45. •• Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83. https://doi.org/10.1016/S1470-2045(16)30053-5. The only prospective trial in patients with lung cancer brain metastases assessing efficacy of immunotherapy. Pembrolizumab demonstrated intracranial activity in patients with lung cancer brain metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  CAS  PubMed  Google Scholar 

  47. Gupta R, Dastane AM, Forozan F, Riley-Portuguez A, Chung F, Lopategui J, et al. Evaluation of EGFR abnormalities in patients with pulmonary adenocarcinoma: the need to test neoplasms with more than one method. Mod Pathol. 2009;22:128–33.

    Article  CAS  PubMed  Google Scholar 

  48. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  49. Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol. 2005;23(11):2556–68. https://doi.org/10.1200/jco.2005.07.799.

    Article  CAS  PubMed  Google Scholar 

  50. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eichler AF, Kahle KT, Wang DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol. 2010;12:1193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol. 2008;21(Suppl 2):S16–22. https://doi.org/10.1038/modpathol.3801018.

    Article  CAS  PubMed  Google Scholar 

  53. Sordella, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7.

    Article  CAS  PubMed  Google Scholar 

  54. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101:13306–11.

    Article  CAS  Google Scholar 

  55. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–67.

    Article  CAS  PubMed  Google Scholar 

  56. •• Soria J-C, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2017;NEJMoa1713137. https://doi.org/10.1056/NEJMoa1713137. The phase III clinical trial included patients with previously untreated, EGFR-mutant advanced NSCLC and compared the efficacy of osimertinib with standard EGFR TKIs. Osimertinib demonstrated better efficacy as compared to standard EGFR TKIs.

    Article  PubMed  Google Scholar 

  57. Nakamichi S, Seike M, Miyanaga A, et al. RT-PCR for Detecting ALK translocations in cytology samples from lung cancer patients. Anticancer Res. 2017;37(6):3295–9. https://doi.org/10.21873/anticanres.11696.

    Article  PubMed  Google Scholar 

  58. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  59. Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14:6618–24.

    Article  CAS  PubMed  Google Scholar 

  60. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong DW-S, Leung EL-H, So KK-T, Tam IY-S, Sihoe AD-L, Cheng L-C, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115:1723–33.

  62. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72.

    Article  CAS  PubMed  Google Scholar 

  63. Schalper KA, Venur VA, Velcheti V. Programmed death-1/programmed death-1 ligand axis as a therapeutic target in oncology: current insights. J Receptor Ligand Channel Res. 2015;8:1–7. https://doi.org/10.2147/JRLCR.S39986.

    Article  Google Scholar 

  64. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.

    Article  CAS  PubMed  Google Scholar 

  65. Deng Y, Feng W, Wu J, et al. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol Clin Oncol. 2014;2:116e120.

    Google Scholar 

  66. Wang M, Jing Z, Minjiang C. Cerebral penetration of gefitinib in patients with lung adenocarcinoma. J Clin Oncol. 2011;29(15_suppl):7608. https://doi.org/10.1200/jco.2011.29.15_suppl.7608.

    Article  Google Scholar 

  67. Jeffrey V. Brower & H. Ian Robins (2016) Erlotinib for the treatment of brain metastases in non-small cell lung cancer, Expert Opinion on Pharmacotherapy 17(7):1013–1021,DOI: https://doi.org/10.1517/14656566.2016.1165206.

    Article  CAS  PubMed  Google Scholar 

  68. Hotta K, Kiura K, Ueoka H, Tabata M, Fujiwara K, Kozuki T,et al. Effect of gefitinib (‘Iressa’, ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung cancer (Amsterdam, Netherlands). 2004;46(2):255–261. doi:https://doi.org/10.1016/j.lungcan.2004.04.036.

    Article  PubMed  Google Scholar 

  69. Kim JE, Lee DH, Choi Y, et al. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for neversmokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer. 2009;65:351e354.

    Google Scholar 

  70. Porta R, Sanchez-Torres JM, Paz-Ares L, Massuti B, Reguart N, Mayo C, et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J. 2011;37(3):624–31. https://doi.org/10.1183/09031936.00195609.

    Article  CAS  PubMed  Google Scholar 

  71. Grommes C, Oxnard GR, Kris MG, Miller VA, Pao W, Holodny AI, et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro-Oncology. 2011;13(12):1364–9. https://doi.org/10.1093/neuonc/nor121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan Y, Huang Z, Fang L, Miao L, Gong L, Yu H, et al. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from nonsmall cell lung cancer. Cancer Chemother Pharmacol. 2015;76(3):517–23. https://doi.org/10.1007/s00280-015-2760-5.

    Article  CAS  PubMed  Google Scholar 

  73. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    Article  CAS  PubMed  Google Scholar 

  74. Janne PA, Wang X, Socinski MA, et al. Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 trial. J Clin Oncol.

  75. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  CAS  PubMed  Google Scholar 

  77. Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34. https://doi.org/10.1200/jco.2012.44.2806.

    Article  CAS  PubMed  Google Scholar 

  78. Wu Y-L, Zhou C, Hu C-P, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22. https://doi.org/10.1016/S1470-2045(13)70604-1.

    Article  CAS  PubMed  Google Scholar 

  79. •• Schuler M, Wu Y-L, Hirsh V, et al. First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. J Thorac Oncol. 2016;11(3):380–90. https://doi.org/10.1016/j.jtho.2015.11.014. The subgroup analyses for both LUX-Lung 3 and LUX-lung 6 revealed improved PFS with afatinib versus chemotherapy in patients with EGFR-mutant NSCLC and asymptomatic brain metastases.

    Article  PubMed  Google Scholar 

  80. Ballard P, Yates JW, Yang Z, Kim DW, Yang JC, Cantarini M, et al. Preclinical comparison of osimertinib with other EGFRTKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin Cancer Res. 2016; https://doi.org/10.1158/1078-0432.ccr-16-0399.

    Article  CAS  PubMed  Google Scholar 

  81. Cross DAE, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–61. https://doi.org/10.1158/2159-8290.CD-14-0337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jänne PA, Yang JC-H, Kim D-W, et al. AZD9291 in EGFR inhibitor-resistant no-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–99. https://doi.org/10.1056/NEJMoa1411817.

    Article  PubMed  Google Scholar 

  83. •• Vansteenkiste J, Reungwetwattana T, Nakagawa K, et al. LBA5CNS response to osimertinib vs standard of care (SoC) EGFR-TKI as first-line therapy in patients (pts) with EGFR-TKI sensitising mutation (EGFRm)-positive advanced non-small cell lung cancer (NSCLC): data from the FLAURA study. Ann Oncol. 2017;28(suppl_10):mdx729.007. https://doi.org/10.1093/annonc/mdx729.007. The phase III FLAURA study included patients with previously untreated EGFR-mutant NSCLC and compared osimertinib with standard EGFR TKIs (gefitinib or erlotinib). A subgroup analysis showed better CNS PFS with osimertinib as compared to standard EGFR TKIs.

  84. Ahluwalia MS, Becker K, Levy BP. Epidermal growth factor receptor tyrosine kinase inhibitors for central nervous system metastases from non-small cell lung cancer. Oncology. 2018; https://doi.org/10.1634/theoncologist.2017-0572.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bohn JP, Pall G, Stockhammer G, et al. Targeted therapies for the treatment of brain metastases in solid tumors. Target Oncol. 2016.

  86. Rangachari D, Yamaguchi N, VanderLaan PA, Folch E, Mahadevan A, Floyd SR, et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88(1):108–11. https://doi.org/10.1016/j.lungcan.2015.01.020.

    Article  PubMed  Google Scholar 

  87. The National Comprehensive Cancer Network (NCCN): Clinical practice guidelines in oncology: non-small cell lung cancer. v4.2016.

  88. Costa DB, Shaw AT, Ou SHI, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol. 2015;33:1881–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong A. The emerging role of targeted therapy and immunotherapy in the management of brain metastases in non-small cell lung cancer. Front Oncol. 2017;7:33. https://doi.org/10.3389/fonc.2017.00033.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Venur VA, Ahluwalia MS. Targeted therapy in brain metastases: ready for primetime? American Society of Clinical Oncology educational book. American Society of Clinical Oncology Meeting. 2016;35:e123–30. https://doi.org/10.14694/edbk_100006.

    Article  Google Scholar 

  91. Shaw A, Mehra R, Tan DSW, et al. BM-32 Ceritinib (LDK378) for treatment of patients with ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) and brain metastases (BM) in the ASCEND-1 trial. Neuro Oncol. 2014;16:v39.

    Article  PubMed Central  Google Scholar 

  92. Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.

    Article  CAS  PubMed  Google Scholar 

  93. Hida T, Nokihara H, Kondo M, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39. https://doi.org/10.1016/S0140-6736(17)30565-2.

    Article  CAS  PubMed  Google Scholar 

  94. Camidge DR, Bazhenova L, Salgia R, et al. Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK1 non-small cell lung cancer (NSCLC). J Clin Oncol. 33;2015(suppl; abstr 8062).

  95. Solomon B, Bauer T, Felip E, Besse B, James L, Clancy J. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC). Abstract 9009 Presented at ASCO Annual Meeting Proceedings in Chicago (2016).

    Article  Google Scholar 

  96. Dudnik E, et al. Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer (Amsterdam, Netherlands). 2016;98:114–7. https://doi.org/10.1016/j.lungcan.2016.05.031.

    Article  Google Scholar 

  97. Watanabe H, Kubo T, Ninomiya T, et al. The effect of nivolumab treatment for central nervous system metastases in nonsmall cell lung cancer. J Clin Oncol. 2017;35(15).

    Article  Google Scholar 

  98. Gauvain C, Vauléon E, Chouaid C, et al. Intracerebral efficacy and tolerance of nivolumab in non-small-cell lung cancer patients with brain metastases. Lung Cancer. 2018;116. https://doi.org/10.1016/j.lungcan.2017.12.008

    Article  PubMed  Google Scholar 

  99. Thapa B, Ahluwalia M, et al. CMET-01. Efficacy and outcome of anti-PD1 therapy in patients with lung cancer brain metastasis. Neuro-Oncol. 2017;19(suppl_6):vi39. https://doi.org/10.1093/neuonc/nox168.151.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmeet S. Ahluwalia MD, FACP.

Ethics declarations

Conflict of Interest

Dr. Ahluwalia reports grants and personal fees from Elekta, grants and personal fees from Incyte, grants and personal fees from BMS, grants and personal fees from Astrazeneca, grants from Tracon, grants from Novartis, grants and personal fees from Novocure, personal fees from Monteris Medical, personal fees from Caris Life Sciences, personal fees from MRI Solutions, grants and personal fees from Abbvie, personal fees from CBT Pharmaceuticals, personal fees from Flatiron, personal fees from Varian, personal fees from VBI vaccines, and personal fees and others from MImivax, outside the submitted work.

Dr. Bicky Thapa, Dr. Kunal Desai, Mr. Adam Lauko, and Dr. Vyshak Alva Venur each declare that they have no potential conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, B., Lauko, A., Desai, K. et al. Novel Systemic Treatments for Brain Metastases From Lung Cancer. Curr Treat Options Neurol 20, 48 (2018). https://doi.org/10.1007/s11940-018-0533-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0533-2

Keywords

Navigation