Skip to main content

Advertisement

Log in

Metabolic advantages and vulnerabilities in brain metastases

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metabolic adaptations permit tumor cells to metastasize to and thrive in the brain. Brain metastases continue to present clinical challenges due to rising incidence and resistance to current treatments. Therefore, elucidating altered metabolic pathways in brain metastases may provide new therapeutic targets for the treatment of aggressive disease. Due to the high demand for glucose in the brain, increased glycolytic activity is favored for energy production. Primary tumors that undergo Warburg-like metabolic reprogramming become suited to growth in the brain microenvironment. Indeed, elevated metabolism is a predictor of metastasis in many cancer subtypes. Specifically, metabolic alterations are seen in primary tumors that are associated with the formation of brain metastases, namely breast cancer, lung cancer, and melanoma. Because of this selective pressure, inhibitors of key metabolic factors may reduce tumor cell viability, thus exploiting metabolic pathways for cancer therapeutics. This review summarizes the metabolic advantages and vulnerabilities of brain metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted by permission from Elsevier: Cell Press, copyright 2014 [26]

Fig. 2

Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 2015 [32]

Fig. 3
Fig. 4

Reprinted by permission from Elsevier: Advanced Drug Delivery Reviews, copyright 2011 [75]

Similar content being viewed by others

Abbreviations

AGPS:

Alkylglyceronephosphate synthase

BMs:

Brain metastases

BBB:

Blood–brain barrier

CCL2:

Chemokine C–C motif ligand 2

EGFR:

Epidermal growth factor receptor

EPR:

Enhanced permeability and retention

ER:

Estrogen receptor

FDG:

Fluorodeoxyglucose

FOXO3a:

Forkhead box O 3a

GABA:

Gamma-aminobutyric acid

GSTP1:

Glutathione S-transferase Pi 1

HER2:

Human epidermal growth factor receptor 2

MAGL:

Monoacylglycerol lipase

MCT1:

Monocarboxylic acid transporter 1

NMRl:

Nuclear magnetic resonance

NSCLC:

Non-small cell lung carcinoma

PET:

Positron emission tomography

PI3K:

Phosphoinositide 3-kinase

PTEN:

Phosphatase and tensin homolog

SCLC:

Small cell lung carcinoma

TXNIP:

Thioredoxin-interacting protein

TNBC:

Triple negative breast cancer

WBRT:

Whole brain radiation therapy

VEGF:

Vascular endothelial growth factor

References

  1. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    Article  CAS  PubMed  Google Scholar 

  2. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14:48–54

    Article  PubMed  Google Scholar 

  3. Markesbery WR, Brooks WH, Gupta GD, Young AB (1978) Treatment for patients with cerebral metastases. Arch Neurol 35:754–756

    Article  CAS  PubMed  Google Scholar 

  4. Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, Sneed PK, Chao ST, Weil RJ, Suh J, Bhatt A, Jensen AW, Brown PD, Shih HA, Kirkpatrick J, Gaspar LE, Fiveash JB, Chiang V, Knisely JP, Sperduto CM, Lin N, Mehta M (2012) Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol 30:419–425

    Article  PubMed  Google Scholar 

  5. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boroughs LK, De Berardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120

    Article  CAS  PubMed  Google Scholar 

  9. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–93

    Article  CAS  PubMed  Google Scholar 

  10. Larkin JR, Dickens AM, Claridge TD, Bristow C, Andreou K, Anthony DC, Sibson NR (2016) Early diagnosis of brain metastases using a biofluids-metabolomics approach in mice. Theranostics 6:2161–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58:699–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Mates JM, Pascual JM, Maher EA, Malloy CR, Deberardinis RJ, Bachoo RM (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Witzel I, Oliveira-Ferrer L, Pantel K, Muller V, Wikman H (2016) Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res 18:8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nam DH, Jeon HM, Kim S, Kim MH, Lee YJ, Lee MS, Kim H, Joo KM, Lee DS, Price JE, Bang SI, Park WY (2008) Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 14:4059–4066

    Article  CAS  PubMed  Google Scholar 

  15. Lacroix M (2008) Persistent use of “false” cell lines. Int J Cancer 122:1–4

    Article  CAS  PubMed  Google Scholar 

  16. Xing F, Kobayashi A, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Wilber A, Mo YY, Moore BE, Liu W, Fukuda K, Iiizumi M, Sharma S, Liu Y, Wu K, Peralta E, Watabe K (2013) Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 5:384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D, Steeg PS, Allan AL, Chambers AF (2011) Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 9:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bi P, Kuang S (2015) Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 26:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, Foekens JA, Martens JW (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Sneve M, Haroldson TA, Smith JP, Drewes LR (2016) Regulation of monocarboxylic acid transporter 1 trafficking by the canonical Wnt/beta-catenin pathway in rat brain endothelial cells requires cross-talk with notch signaling. J Biol Chem 291:8059–8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, Alavi M, Bagryanova L, Krotee PA, Gardner BK, Behbahan IS, Horvath S, Chia D, Mellinghoff IK, Hurvitz SA, Dubinett SM, Critchlow SE, Kurdistani SK, Goodglick L, Braas D, Graeber TG, Christofk HR (2016) MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 14:1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Momeny M, Saunus JM, Marturana F, McCart Reed AE, Black D, Sala G, Iacobelli S, Holland JD, Yu D, Da Silva L, Simpson PT, Khanna KK, Chenevix-Trench G, Lakhani SR (2015) Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 6:3932–3946

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hohensee I, Lamszus K, Riethdorf S, Meyer-Staeckling S, Glatzel M, Matschke J, Witzel I, Westphal M, Brandt B, Muller V, Pantel K, Wikman H (2013) Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. Am J Pathol 183:83–95

    Article  CAS  PubMed  Google Scholar 

  24. Yatabe Y, Takahashi T, Mitsudomi T (2008) Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res 68:2106–2111

    Article  CAS  PubMed  Google Scholar 

  25. Wikman H, Lamszus K, Detels N, Uslar L, Wrage M, Benner C, Hohensee I, Ylstra B, Eylmann K, Zapatka M, Sauter G, Kemming D, Glatzel M, Muller V, Westphal M, Pantel K (2012) Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res 14:R49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masui K, Cavenee WK, Mischel PS (2014) mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 25:364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, Bar-Eli M, Aldape KD, Fidler IJ (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q, Langley RR, Maya M, He J, Kim SW, Weihua Z, Balasubramanian K, Fan D, Mills GB, Hung MC, Fidler IJ (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13:286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, Regen T, Van Rossum D, Klemm F, Schulz M, Siam L, Hoffmann A, Trumper L, Stadelmann C, Bechmann I, Hanisch UK, Binder C (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58:1477–1489

    PubMed  Google Scholar 

  30. Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A (1997) Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 77:357–368

    CAS  PubMed  Google Scholar 

  31. Termini J, Neman J, Jandial R (2014) Role of the neural niche in brain metastatic cancer. Cancer Res 74:4011–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, Kowolik CM, Li H, Hambrecht AC, Roberts E, Jandial R (2014) Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci USA 111:984-989

    Article  PubMed Central  Google Scholar 

  34. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C, Huang Z, Barnett S, Mickey BE, DeBerardinis RJ, Tu BP, Maher EA, Bachoo RM (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohamed A, Deng X, Khuri FR, Owonikoko TK (2014) Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 15:7–15

    Article  CAS  PubMed  Google Scholar 

  36. Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA (2012) Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell Melanoma Res 25:732–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mishra P, Ambs S (2015) Metabolic signatures of human breast cancer. Mol Cell Oncol 2:e992217

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benjamin DI, Cozzo A, Ji X, Roberts LS, Louie SM, Mulvihill MM, Luo K, Nomura DK (2013) Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci USA 110:14912-14917

    Article  PubMed Central  Google Scholar 

  39. Olson EM, Abdel-Rasoul M, Maly J, Wu CS, Lin NU, Shapiro CL (2013) Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Ann Oncol 24:1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sihto H, Lundin J, Lundin M, Lehtimaki T, Ristimaki A, Holli K, Sailas L, Kataja V, Turpeenniemi-Hujanen T, Isola J, Heikkila P, Joensuu H (2011) Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res 13:R87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277

    Article  PubMed  Google Scholar 

  42. Choi J, Kim DH, Jung WH, Koo JS (2013) Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res 15:R78

    Article  PubMed  PubMed Central  Google Scholar 

  43. Taylor S, Lam M, Pararasa C, Brown JE, Carmichael AR, Griffiths HR (2015) Evaluating the evidence for targeting FOXO3a in breast cancer: a systematic review. Cancer Cell Int 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, Miyamoto DK, Goga A, Weerapana E, Nomura DK (2016) GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol 23:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J, Hsu JL, Raftery D, Djukovic D, Gu H, Chang WC, Wang HL, Chen ML, Huo L, Chen CH, Wu Y, Sahin A, Hanash SM, Hortobagyi GN, Hung MC (2016) EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res 76:1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen L, O’Shea JM, Kaadige MR, Cunha S, Wilde BR, Cohen AL, Welm AL, Ayer DE (2015) Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci USA 112:5425-5430

    PubMed Central  Google Scholar 

  47. Chen D, Dang BL, Huang JZ, Chen M, Wu D, Xu ML, Li R, Yan GR (2015) MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1alpha-TWIST signaling axis in breast cancer. Oncotarget 6:32701–32712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singhi AD, Cimino-Mathews A, Jenkins RB, Lan F, Fink SR, Nassar H, Vang R, Fetting JH, Hicks J, Sukumar S, De Marzo AM, Argani P (2012) MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Mod Pathol 25:378–387

    Article  CAS  PubMed  Google Scholar 

  49. Fink LS, Beatty A, Devarajan K, Peri S, Peterson JR (2015) Pharmacological profiling of kinase dependency in cell lines across triple-negative breast cancer subtypes. Mol Cancer Ther 14:298–306

    Article  CAS  PubMed  Google Scholar 

  50. Ali A, Goffin JR, Arnold A, Ellis PM (2013) Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr Oncol 20:e300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schuurbiers OC, Meijer TW, Kaanders JH, Looijen-Salamon, MG, de Geus-Oei LF, van der Drift MA, van der Heijden EH, Oyen WJ, Visser EP, Span PN, Bussink J (2014) Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol 9:1485–1493

    Article  CAS  PubMed  Google Scholar 

  52. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS, Shaw RJ (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23:143–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao N, Wilkerson MD, Shah U, Yin X, Wang A, Hayward MC, Roberts P, Lee CB, Parsons AM, Thorne LB, Haithcock BE, Grilley-Olson JE, Stinchcombe TE, Funkhouser WK, Wong KK, Sharpless NE, Hayes DN (2014) Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma. Lung Cancer 86:255–261

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lekic M, Kovac V, Triller N, Knez L, Sadikov A, Cufer T (2012) Outcome of small cell lung cancer (SCLC) patients with brain metastases in a routine clinical setting. Radiol Oncol 46:54–59

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee YJ, Cho A, Cho BC, Yun M, Kim SK, Chang J, Moon JW, Park IK, Choi HJ, Kim JH (2009) High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res15:2426–2432

    Article  CAS  PubMed  Google Scholar 

  56. Park SB, Choi JY, Moon SH, Yoo J, Kim H, Ahn YC, Ahn MJ, Park K, Kim BT (2014) Prognostic value of volumetric metabolic parameters measured by [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imaging 14:2

    PubMed  PubMed Central  Google Scholar 

  57. Fischer B, Marinov M, Arcaro A (2007) Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 33:391–406

    Article  CAS  PubMed  Google Scholar 

  58. Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, Hamid O, Infante JR, Millward M, Pavlick AC, O’Day SJ, Blackman SC, Curtis CM, Lebowitz P, Ma B, Ouellet D, Kefford RF (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379:1893–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 363:809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nygaard V, Prasmickaite L, Vasiliauskaite K, Clancy T, Hovig E (2014) Melanoma brain colonization involves the emergence of a brain-adaptive phenotype. Oncoscience 1:82–94

    Article  PubMed  PubMed Central  Google Scholar 

  61. Izraely S, Sagi-Assif O, Klein A, Meshel T, Ben-Menachem S, Zaritsky A, Ehrlich M, Prieto VG, Bar-Eli M, Pirker C, Berger W, Nahmias C, Couraud PO, Hoon DS, Witz IP (2015) The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis. Int J Cancer 136:1296–1307

    Article  CAS  PubMed  Google Scholar 

  62. Bettum IJ, Gorad SS, Barkovskaya A, Pettersen S, Moestue SA, Vasiliauskaite K, Tenstad E, Oyjord T, Risa O, Nygaard V, Maelandsmo GM, Prasmickaite L (2015) Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett 366:71–83

    Article  CAS  PubMed  Google Scholar 

  63. Rodrigues MF, Obre E, de Melo FH, Santos GC Jr, Galina A, Jasiulionis MG, Rossignol R, Rumjanek FD, Amoedo ND (2016) Enhanced OXPHOS, glutaminolysis and beta-oxidation constitute the metastatic phenotype of melanoma cells. Biochem J 473:703–715

    Article  CAS  PubMed  Google Scholar 

  64. Le Rhun E, Dhermain F, Vogin G, Reyns N, Metellus P. (2016) Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother

  65. Krop IE, Lin NU, Blackwell K, Guardino E, Huober J, Lu M, Miles D, Samant M, Welslau M, Dieras V (2015) Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol 26:113–119

    Article  CAS  PubMed  Google Scholar 

  66. Bachelot T, Romieu G, Campone M, Dieras V, Cropet C, Dalenc F, Jimenez M, Le Rhun E, Pierga JY, Goncalves A, Leheurteur M, Domont J, Gutierrez M, Cure H, Ferrero JM, Labbe-Devilliers C (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14:64–71

    Article  CAS  PubMed  Google Scholar 

  67. Zhao X, Zhu G, Chen H, Yang P, Li F, Du N (2014) Efficacy of icotinib versus traditional chemotherapy as first-line treatment for preventing brain metastasis from advanced lung adenocarcinoma in patients with epidermal growth factor receptor-sensitive mutation. J Cancer Res Ther 10(7):155–159

    Article  CAS  Google Scholar 

  68. Ohashi K, Maruvka YE, Michor F, Pao W (2013) Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol 31:1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stricker T, Arteaga CL (2015) Drug-resistant brain metastases: a role for pharmacology, tumor evolution, and too-late therapy. Cancer Discov 5:1124–1126

    Article  CAS  PubMed  Google Scholar 

  70. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  71. Stacpoole PW, Kerr DS, Barnes C, Bunch ST, Carney PR, Fennell EM, Felitsyn NM, Gilmore RL, Greer M, Henderson GN, Hutson AD, Neiberger RE, O’Brien RG, Perkins LA, Quisling RG, Shroads AL, Shuster JJ, Silverstein JH, Theriaque DW, Valenstein E (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117:1519–1531

    Article  PubMed  Google Scholar 

  72. Kinnaird A, Dromparis P, Saleme B, Gurtu V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink DB, Carmine-Simmen K, Moore R, Lewis JD, Michelakis ED (2016) Metabolic modulation of clear-cell renal cell carcinoma with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase. Eur Urol 69:734–744

    Article  CAS  PubMed  Google Scholar 

  73. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharmaceut Biopharmaceut 71:409–419

    Article  CAS  Google Scholar 

  74. Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, Shirakawa T, Kirihata M, Kasaoka S, Maruyama K, Kumada H, Sakurai Y, Masunaga S, Ono K, Miyatake S. (2008) Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neurooncol 87:287–294

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Liu L. (2012) Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64:640–665

    Article  CAS  PubMed  Google Scholar 

  76. Soni V, Kohli DV, Jain SK. (2008) Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target 16:73–78

    Article  CAS  PubMed  Google Scholar 

  77. Gan HK, Kaye AH, Luwor RB. (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16:748–754

    Article  CAS  PubMed  Google Scholar 

  78. Ge H, Gong X, Tang CK. (2002) Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int J Cancer 98:357–361

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by National Cancer Institute (Grant No. R01CA176611 to J.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Termini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciminera, A.K., Jandial, R. & Termini, J. Metabolic advantages and vulnerabilities in brain metastases. Clin Exp Metastasis 34, 401–410 (2017). https://doi.org/10.1007/s10585-017-9864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-017-9864-8

Keywords

Navigation