Skip to main content

Advertisement

Log in

Treatment of Vascular Cognitive Impairment

  • Dementia (E McDade, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Cerebrovascular disease (CVD) is an important cause of cognitive dysfunction and dementia. The term vascular cognitive impairment (VCI) is used to describe the entire spectrum of cognitive dysfunction—ranging from mild impairment to dementia—attributable to all forms of cerebrovascular disease. Accurate assessment and management of vascular risk factors are a top priority in the treatment of VCI, particularly early in the disease when prevention strategies may prove to be more effective. There are limited treatment options to improve cognition and function in VCI. Several acetylcholinesterase inhibitors and the NMDA receptor antagonist memantine have been studied in large, well-designed trials. These agents are safe and provide modest cognitive benefits in vascular dementia (VaD) but have demonstrated inconsistent efficacy on functional measures. Other therapies, such as aspirin, calcium channel blockers, and vitamin supplementation, have less evidence to support their use in improving cognition in VCI. Although primary prevention trials suggest that treatment of hypertension, adherence to a Mediterranean diet, physical activity, and smoking cessation may reduce the risk of cognitive decline, there is limited evidence regarding these interventions in helping improve cognition in VCI. The pathophysiology and treatment of cerebral autosomal dominant arteriopathy with subcortical infarcts (CADASIL), cerebral amyloid angiopathy (CAA), and subcortical white matter disease (SWMD) deserves special consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fratiglioni L et al. Incidence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S10–5.

    CAS  PubMed  Google Scholar 

  2. Schneider JA. High blood pressure and microinfarcts: a link between vascular risk factors, dementia, and clinical Alzheimer’s disease. J Am Geriatr Soc. 2009;57(11):2146–7.

    PubMed  Google Scholar 

  3. Schneider JA, Bennett DA. Where vascular meets neurodegenerative disease. Stroke. 2010;41(10 Suppl):S144–6.

    PubMed Central  PubMed  Google Scholar 

  4. Babikian V, Ropper AH. Binswanger’s disease: a review. Stroke. 1987;18(1):2–12.

    CAS  PubMed  Google Scholar 

  5. Hachinski VC. Multi-infarct dementia: a reappraisal. Alzheimer Dis Assoc Disord. 1991;5(2):64–8.

    CAS  PubMed  Google Scholar 

  6. van Kooten F, Koudstaal PJ. Epidemiology of post-stroke dementia. Haemostasis. 1998;28(3-4):124–33.

    PubMed  Google Scholar 

  7. Hachinski V. Vascular dementia: a radical redefinition. Dementia. 1994;5(3-4):130–2.

    CAS  PubMed  Google Scholar 

  8. Bowler JV, Hachinski V. Vascular cognitive impairment: a new approach to vascular dementia. Baillieres Clin Neurol. 1995;4(2):357–76.

    CAS  PubMed  Google Scholar 

  9. Roman GC et al. Vascular cognitive disorder: a new diagnostic category updating vascular cognitive impairment and vascular dementia. J Neurol Sci. 2004;226(1-2):81–7.

    PubMed  Google Scholar 

  10. Erkinjuntti T, Gauthier S. The concept of vascular cognitive impairment. Front Neurol Neurosci. 2009;24:79–85.

    PubMed  Google Scholar 

  11. Chui H. Vascular dementia, a new beginning: shifting focus from clinical phenotype to ischemic brain injury. Neurol Clin. 2000;18(4):951–78.

    CAS  PubMed  Google Scholar 

  12. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.

    PubMed  Google Scholar 

  13. Bocti C, Black S, Frank C. Management of dementia with a cerebrovascular component. Alzheimers Dement. 2007;3(4):398–403.

    PubMed  Google Scholar 

  14. Launer LJ, Hughes TM, White LR. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging Study Autopsy Study. Ann Neurol. 2011;70(5):774–80.

    PubMed Central  PubMed  Google Scholar 

  15. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet, 2001. 357(9251): p. 169-75.

  16. Schneider JA et al. Relation of cerebral infarctions to dementia and cognitive function in older persons. Neurology. 2003;60(7):1082–8.

    CAS  PubMed  Google Scholar 

  17. Sachdev PS et al. Progression of cognitive impairment in stroke patients. Neurology. 2004;63(9):1618–23.

    CAS  PubMed  Google Scholar 

  18. Desmond DW et al. Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke. 2002;33(9):2254–60.

    PubMed  Google Scholar 

  19. Dichgans M, Zietemann V. Prevention of vascular cognitive impairment. Stroke. 2012;43(11):3137–46. Concise review of the evidence regarding strategies to prevent VCI.

    PubMed  Google Scholar 

  20. O'Donnell MJ et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    PubMed  Google Scholar 

  21. Douiri A et al. Long-term effects of secondary prevention on cognitive function in stroke patients. Circulation. 2013;128(12):1341–8. Large study on vascular risk management noting long-term effects (up to 16 years) on cognition.

    PubMed  Google Scholar 

  22. Gorelick PB et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713. Comprehensive review of risk factors, pathophysiology, and treatment of VCI.

  23. Gupta M et al. The profile of behavioral and psychological symptoms in vascular cognitive impairment with and without dementia. Ann Indian Acad Neurol. 2013;16(4):599–602.

    PubMed Central  PubMed  Google Scholar 

  24. Staekenborg SS et al. Behavioural and psychological symptoms in vascular dementia; differences between small- and large-vessel disease. J Neurol Neurosurg Psychiatry. 2010;81(5):547–51.

    PubMed  Google Scholar 

  25. Chiu PY, Liu CH, Tsai CH. Neuropsychiatric manifestations in vascular cognitive impairment patients with and without dementia. Acta Neurol Taiwan. 2007;16(2):86–91.

    PubMed  Google Scholar 

  26. Hsieh CJ, Chang CC, Lin CC. Neuropsychiatric profiles of patients with Alzheimer’s disease and vascular dementia in Taiwan. Int J Geriatr Psychiatry. 2009;24(6):570–7.

    PubMed  Google Scholar 

  27. Sink KM et al. Caregiver characteristics are associated with neuropsychiatric symptoms of dementia. J Am Geriatr Soc. 2006;54(5):796–803.

    PubMed  Google Scholar 

  28. Herrmann N et al. The contribution of neuropsychiatric symptoms to the cost of dementia care. Int J Geriatr Psychiatry. 2006;21(10):972–6.

    PubMed  Google Scholar 

  29. Scarmeas N et al. Delusions and hallucinations are associated with worse outcome in Alzheimer disease. Arch Neurol. 2005;62(10):1601–8.

    PubMed Central  PubMed  Google Scholar 

  30. Aarsland D, Sharp S, Ballard C. Psychiatric and behavioral symptoms in Alzheimer’s disease and other dementias: etiology and management. Curr Neurol Neurosci Rep. 2005;5(5):345–54.

    PubMed  Google Scholar 

  31. Perry E et al. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273–80.

    CAS  PubMed  Google Scholar 

  32. Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev. 2011;35(6):1397–409.

    CAS  PubMed  Google Scholar 

  33. Selden NR et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(Pt 12):2249–57.

    PubMed  Google Scholar 

  34. Mesulam M, Siddique T, Cohen B. Cholinergic denervation in a pure multi-infarct state: observations on CADASIL. Neurology. 2003;60(7):1183–5.

    PubMed  Google Scholar 

  35. Tohgi H et al. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J Neural Transm. 1996;103(10):1211–20.

    CAS  PubMed  Google Scholar 

  36. Roman GC. Facts, myths, and controversies in vascular dementia. J Neurol Sci. 2004;226(1-2):49–52.

    PubMed  Google Scholar 

  37. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36(4):375–99.

    CAS  PubMed  Google Scholar 

  38. Ceravolo R et al. Cerebral perfusional effects of cholinesterase inhibitors in Alzheimer disease. Clin Neuropharmacol. 2004;27(4):166–70.

    CAS  PubMed  Google Scholar 

  39. Roman GC et al. Donepezil in vascular dementia: combined analysis of two large-scale clinical trials. Dement Geriatr Cogn Disord. 2005;20(6):338–44.

    CAS  PubMed  Google Scholar 

  40. Wilkinson D et al. Donepezil in vascular dementia: a randomized, placebo-controlled study. Neurology. 2003;61(4):479–86.

    CAS  PubMed  Google Scholar 

  41. Roman GC et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia: differential effects by hippocampal size. Stroke. 2010;41(6):1213–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Schilstrom B et al. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology. 2007;32(1):43–53.

    PubMed  Google Scholar 

  43. Auchus AP et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007;69(5):448–58.

    CAS  PubMed  Google Scholar 

  44. Erkinjuntti T et al. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283–90.

    PubMed  Google Scholar 

  45. Erkinjuntti T, Roman G, Gauthier S. Treatment of vascular dementia—evidence from clinical trials with cholinesterase inhibitors. J Neurol Sci. 2004;226(1-2):63–6.

    PubMed  Google Scholar 

  46. Erkinjuntti T et al. An open-label extension trial of galantamine in patients with probable vascular dementia and mixed dementia. Clin Ther. 2003;25(6):1765–82.

    CAS  PubMed  Google Scholar 

  47. Bartorelli L et al. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer’s disease. Curr Med Res Opin. 2005;21(11):1809–18.

    CAS  PubMed  Google Scholar 

  48. Ballard C et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study. Curr Med Res Opin. 2008;24(9):2561–74.

    CAS  PubMed  Google Scholar 

  49. Mok V et al. Rivastigmine in Chinese patients with subcortical vascular dementia. Neuropsychiatr Dis Treat. 2007;3(6):943–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kumar V et al. An efficacy and safety analysis of Exelon in Alzheimer’s disease patients with concurrent vascular risk factors. Eur J Neurol. 2000;7(2):159–69.

    CAS  PubMed  Google Scholar 

  51. Jones RW. A review comparing the safety and tolerability of memantine with the acetylcholinesterase inhibitors. Int J Geriatr Psychiatry. 2010;25(6):547–53.

    CAS  PubMed  Google Scholar 

  52. Orgogozo JM et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834–9.

    CAS  PubMed  Google Scholar 

  53. Wilcock G, Mobius HJ, Stoffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.

    CAS  PubMed  Google Scholar 

  54. Tomassoni D et al. Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin Exp Hypertens. 2008;30(8):744–66.

    CAS  PubMed  Google Scholar 

  55. Lopez-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002;(3):p. Cd000147.

  56. Wang P et al. Rationale and design of a double-blind, placebo-controlled, randomized trial to evaluate the safety and efficacy of nimodipine in preventing cognitive impairment in ischemic cerebrovascular events (NICE). BMC Neurol. 2012;12:88.

    PubMed Central  PubMed  Google Scholar 

  57. Amenta F et al. Nicardipine: a hypotensive dihydropyridine-type calcium antagonist with a peculiar cerebrovascular profile. Clin Exp Hypertens. 2008;30(8):808–26.

    CAS  PubMed  Google Scholar 

  58. An experimental, randomized, double-blind, placebo-controlled clinical trial to investigate the effect of nicardipine on cognitive function in patients with vascular dementia. Spanish group of nicardipine study in vascular dementia]. Rev Neurol, 1999. 28(9): p. 835-45.

  59. Gonzalez-Gonzalez JA, Lozano R. A study of the tolerability and effectiveness of nicardipine retard in cognitive deterioration of vascular origin. Rev Neurol. 2000;30(8):719–28.

    CAS  PubMed  Google Scholar 

  60. Price JF et al. Low dose aspirin and cognitive function in middle aged to elderly adults: randomised controlled trial. BMJ. 2008;337:a1198.

    PubMed Central  PubMed  Google Scholar 

  61. Diener HC, Sacco R, Yusuf S. Rationale, design and baseline data of a randomized, double-blind, controlled trial comparing two antithrombotic regimens (a fixed-dose combination of extended-release dipyridamole plus ASA with clopidogrel) and telmisartan versus placebo in patients with strokes: the Prevention Regimen for Effectively Avoiding Second Strokes Trial (PRoFESS). Cerebrovasc Dis. 2007;23(5-6):368–80.

    CAS  PubMed  Google Scholar 

  62. McIlroy SP et al. Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke. 2002;33(10):2351–6.

    CAS  PubMed  Google Scholar 

  63. Tanne D et al. Prospective study of serum homocysteine and risk of ischemic stroke among patients with preexisting coronary heart disease. Stroke. 2003;34(3):632–6.

    PubMed  Google Scholar 

  64. Selhub J et al. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr. 2000;71(2):p. 614s–20.

  65. Malouf R, Grimley Evans J. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev. 2008;(4):p. Cd004514.

  66. Lewerin C et al. Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr. 2005;81(5):1155–62.

    CAS  PubMed  Google Scholar 

  67. Clarke R, Harrison G, Richards S. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J Intern Med. 2003;254(1):67–75.

    CAS  PubMed  Google Scholar 

  68. McMahon JA et al. A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med. 2006;354(26):2764–72.

    CAS  PubMed  Google Scholar 

  69. Durga J et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16.

    CAS  PubMed  Google Scholar 

  70. Solfrizzi V et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother. 2011;11(5):677–708.

    CAS  PubMed  Google Scholar 

  71. Tangney CC et al. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr. 2011;93(3):601–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Feart C et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. Jama. 2009;302(6):638–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Morris MC. Nutritional determinants of cognitive aging and dementia. Proc Nutr Soc. 2012;71(1):1–13.

    CAS  PubMed  Google Scholar 

  74. Kramer AF et al. Fitness, aging and neurocognitive function. Neurobiol Aging. 2005;26 Suppl 1:124–7.

    PubMed  Google Scholar 

  75. Vona M et al. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119(12):1601–8.

    CAS  PubMed  Google Scholar 

  76. Angevaren M et al. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;(3):p. Cd005381.

  77. Lautenschlager NT et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. Jama. 2008;300(9):1027–37.

    CAS  PubMed  Google Scholar 

  78. Aarsland D et al. Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment Health. 2010;14(4):386–95.

    PubMed  Google Scholar 

  79. Verdelho A et al. Physical activity prevents progression for cognitive impairment and vascular dementia: results from the LADIS (Leukoaraiosis and Disability) study. Stroke. 2012;43(12):3331–5.

    PubMed  Google Scholar 

  80. Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer’s disease: a meta-analysis of the literature. Acta Psychiatr Scand. 2006;114(2):75–90.

    CAS  PubMed  Google Scholar 

  81. Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: a review. Alzheimers Res Ther. 2013;5(4):35.

    PubMed Central  PubMed  Google Scholar 

  82. Horr T, Messinger-Rapport B, Pillai JA. Systematic review of strengths and limitations of randomized controlled trials for non-pharmacological interventions in mild cognitive impairment: focus on Alzheimer’s disease. J Nutr Health Aging. 2015;19(2):141–53.

    CAS  PubMed  Google Scholar 

  83. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487–99.

    PubMed  Google Scholar 

  84. Nation DA et al. Pulse pressure in relation to tau-mediated neurodegeneration, cerebral amyloidosis, and progression to dementia in very old adults. JAMA Neurol. 2015;72(5):546–53.

    PubMed Central  PubMed  Google Scholar 

  85. Kennelly SP, Lawlor BA, Kenny RA. Blood pressure and the risk for dementia: a double edged sword. Ageing Res Rev. 2009;8(2):61–70.

    PubMed  Google Scholar 

  86. In't Veld BA et al. Antihypertensive drugs and incidence of dementia: the Rotterdam Study. Neurobiol Aging. 2001;22(3):p. 407–12.

    PubMed  Google Scholar 

  87. Peila R et al. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke. 2006;37(5):1165–70.

    PubMed  Google Scholar 

  88. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. Jama, 1991. 265(24): p. 3255-64.

  89. Lithell H et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21(5):875–86.

    CAS  PubMed  Google Scholar 

  90. Peters R et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7(8):683–9.

    CAS  PubMed  Google Scholar 

  91. Forette F et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352(9137):1347–51.

    CAS  PubMed  Google Scholar 

  92. Forette F et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046–52.

    PubMed  Google Scholar 

  93. Tzourio C et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003;163(9):1069–75.

    CAS  PubMed  Google Scholar 

  94. Dufouil C et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation. 2005;112(11):1644–50.

    PubMed  Google Scholar 

  95. van Vliet P et al. The influence of age on the association between cholesterol and cognitive function. Exp Gerontol. 2009;44(1-2):112–22.

    PubMed  Google Scholar 

  96. Solomon A et al. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28(1):75–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Giannopoulos S et al. Statins and vascular dementia: a review. J Alzheimers Dis. 2014;42 Suppl 3:S315–20.

    PubMed  Google Scholar 

  98. Feldman HH et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010;74(12):956–64.

    CAS  PubMed  Google Scholar 

  99. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.

  100. Trompet S et al. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J Neurol. 2010;257(1):85–90.

    CAS  PubMed  Google Scholar 

  101. Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4(1), e4144.

    PubMed Central  PubMed  Google Scholar 

  102. Saczynski JS et al. Cognitive impairment: an increasingly important complication of type 2 diabetes: the age, gene/environment susceptibility—Reykjavik study. Am J Epidemiol. 2008;168(10):1132–9.

    PubMed Central  PubMed  Google Scholar 

  103. Abbatecola AM et al. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology. 2006;67(2):235–40.

    CAS  PubMed  Google Scholar 

  104. Areosa SA, Grimley EV. Effect of the treatment of type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2002;(4):p. Cd003804.

  105. Launer LJ et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10(11):969–77.

    PubMed Central  PubMed  Google Scholar 

  106. Patel A et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    CAS  PubMed  Google Scholar 

  107. Whitmer RA et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. Jama. 2009;301(15):1565–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sabia S et al. Impact of smoking on cognitive decline in early old age: the Whitehall II cohort study. Arch Gen Psychiatry. 2012;69(6):627–35.

    PubMed Central  PubMed  Google Scholar 

  109. Galanis DJ et al. Smoking history in middle age and subsequent cognitive performance in elderly Japanese-American men. The Honolulu-Asia Aging Study. Am J Epidemiol. 1997;145(6):507–15.

    CAS  PubMed  Google Scholar 

  110. Ott A et al. Effect of smoking on global cognitive function in nondemented elderly. Neurology. 2004;62(6):920–4.

    CAS  PubMed  Google Scholar 

  111. Almeida OP et al. 24-month effect of smoking cessation on cognitive function and brain structure in later life. Neuroimage. 2011;55(4):1480–9.

    PubMed  Google Scholar 

  112. Auriel E, Greenberg SM. The pathophysiology and clinical presentation of cerebral amyloid angiopathy. Curr Atheroscler Rep. 2012;14(4):343–50.

    CAS  PubMed  Google Scholar 

  113. Aguilar MI, Freeman WD. Spontaneous intracerebral hemorrhage. Semin Neurol. 2010;30(5):555–64.

    PubMed  Google Scholar 

  114. Attems J, Jellinger KA. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol. 2004;107(2):83–90.

    PubMed  Google Scholar 

  115. Greenberg SM. Cerebral amyloid angiopathy and vessel dysfunction. Cerebrovasc Dis. 2002;13 Suppl 2:42–7.

    CAS  PubMed  Google Scholar 

  116. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83(2):124–37. Excellent review of pathophysiology, diagnosis, and treatment of CAA.

    PubMed  Google Scholar 

  117. O'Donnell HC et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med. 2000;342(4):240–5.

    PubMed  Google Scholar 

  118. Biffi A et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2010;75(8):693–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Biffi A et al. Warfarin-related intraventricular hemorrhage: imaging and outcome. Neurology. 2011;77(20):1840–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Arima H et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke. 2010;41(2):394–6.

    CAS  PubMed  Google Scholar 

  121. Goldstein LB et al. Hemorrhagic stroke in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels study. Neurology. 2008;70(24 Pt 2):2364–70.

    CAS  PubMed  Google Scholar 

  122. Chung KK et al. Cerebral amyloid angiopathy related inflammation: three case reports and a review. J Neurol Neurosurg Psychiatry. 2011;82(1):20–6.

    PubMed  Google Scholar 

  123. Kloppenborg RP et al. Steroid responsive encephalopathy in cerebral amyloid angiopathy: a case report and review of evidence for immunosuppressive treatment. J Neuroinflammation. 2010;7:18.

    PubMed Central  PubMed  Google Scholar 

  124. Jellinger KA. The pathology of “vascular dementia”: a critical update. J Alzheimers Dis. 2008;14(1):107–23.

    CAS  PubMed  Google Scholar 

  125. Roh JH, Lee JH. Recent updates on subcortical ischemic vascular dementia. J Stroke. 2014;16(1):18–26.

    PubMed Central  PubMed  Google Scholar 

  126. Yoshita M et al. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology. 2006;67(12):2192–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Benzinger TL. Progressive white matter abnormalities in autosomal dominant Alzheimer’s disease: results of the DIAN study. Alzheimer Dement. 2012;8(4):68–69. Notes significant white matter changes in the DIAN study (AD subjects without significant vascular comorbidities).

    Google Scholar 

  128. Maillard P et al. Coevolution of white matter hyperintensities and cognition in the elderly. Neurology. 2012;79(5):442–8.

    PubMed Central  PubMed  Google Scholar 

  129. Verdelho A et al. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology. 2010;75(2):160–7.

    CAS  PubMed  Google Scholar 

  130. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. Bmj. 2010;341:c3666.

    PubMed Central  PubMed  Google Scholar 

  131. Inzitari D et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. Bmj. 2009;339:b2477.

    PubMed Central  PubMed  Google Scholar 

  132. Richard E et al. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer’s disease (EVA) study. Stroke. 2010;41(3):554–6.

    PubMed  Google Scholar 

  133. Pantoni L et al. Efficacy and safety of nimodipine in subcortical vascular dementia: a randomized placebo-controlled trial. Stroke. 2005;36(3):619–24.

    CAS  PubMed  Google Scholar 

  134. Chabriat H et al. Cadasil. Lancet Neurol. 2009;8(7):643–53.

    PubMed  Google Scholar 

  135. Amberla K et al. Insidious cognitive decline in CADASIL. Stroke. 2004;35(7):1598–602.

    PubMed  Google Scholar 

  136. Dichgans M et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44(5):731–9.

    CAS  PubMed  Google Scholar 

  137. Andre C. CADASIL: pathogenesis, clinical and radiological findings and treatment. Arq Neuropsiquiatr. 2010;68(2):287–99.

    PubMed  Google Scholar 

  138. Mizuno T et al. Cognitive impairment and cerebral hypoperfusion in a CADASIL patient improved during administration of lomerizine. Clin Neuropharmacol. 2009;32(2):113–6.

    CAS  PubMed  Google Scholar 

  139. Dichgans M et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol. 2008;7(4):310–8.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Aaron Ritter and Jagan A. Pillai declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagan A. Pillai MBBS, PhD.

Additional information

This article is part of the Topical Collection on Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritter, A., Pillai, J.A. Treatment of Vascular Cognitive Impairment. Curr Treat Options Neurol 17, 35 (2015). https://doi.org/10.1007/s11940-015-0367-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-015-0367-0

Keywords

Navigation