Skip to main content

Advertisement

Log in

Treatment of Endocrine Disorders in the Neuroscience Intensive Care Unit

  • CRITICAL CARE NEUROLOGY (KN SHETH, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

This review discusses concepts and treatments associated with the most clinically relevant areas of acute endocrine dysfunction amongst patients with common diseases in neuroscience intensive care units (Neuro ICUs). We highlight the following points:

• While a thorough work-up for hyponatremia when it is present is always warranted, subarachnoid hemorrhage (SAH) patients who are in a time window concerning for cerebral vasospasm and who are hyponatremic with high urine output are generally thought to have cerebral salt wasting. These patients are typically treated with a combination of continuous hypertonic saline infusion and fludrocortisone.

• Diabetes insipidus (DI) is often seen in patients fulfilling death by neurological criteria, as well as in patients with recent pituitary surgery and less often in SAH and traumatic brain injury patients who are not brain dead. Patients with DI in the Neuro ICU often cannot drink to thirst and may require a combination of desmopression/vasopressin administration, aggressive fluid repletion, and serum sodium monitoring.

• Diagnosing adrenal insufficiency immediately following pituitary injury is complicated by the fact that the expected atrophy of the adrenal glands, due to lack of a stimulus from pituitary adrenocorticotropic hormone, may take up to 6 weeks to develop. Cosyntropin testing can be falsely normal during this period.

• Both hyperglycemia (glucose >200 mg/dL) and hypoglycemia (glucose <50 mg/dL) are strongly associated with neurological morbidity and mortality in ICUs and should be avoided. Glucose concentrations between 120–160 mg/dL can serve as a reasonable target for insulin infusion protocols.

• There is no data to suggest that treatment of abnormal thyroid function tests in nonthyroidal illness syndrome/sick euthyroid leads to benefits in either mortality or morbidity. True myxedema coma is a rare clinical diagnosis that is treated with intravenous levothyroxine accompanied by stress-dose steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356:2064–72.

    Article  CAS  PubMed  Google Scholar 

  2. Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18:406–16. This article is a thorough review of hyponatremia as it relates to neurocritical care management.

    Article  PubMed  Google Scholar 

  3. Wright WL. Sodium and fluid management in acute brain injury. Curr Neurol Neurosci Rep. 2012;12:466–73.

    Article  CAS  PubMed  Google Scholar 

  4. Sviri GE, Feinsod M, Soustiel JF. Brain natriuretic peptide and cerebral vasospasm in subarachnoid hemorrhage. Clinical and TCD correlations. Stroke. 2000;31:118–22.

    Article  CAS  PubMed  Google Scholar 

  5. Tomida M, Muraki M, Uemura K, Yamasaki K. Plasma concentrations of brain natriuretic peptide in patients with subarachnoid hemorrhage. Stroke. 1998;29:1584–7.

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi AI, Suri MF, Sung GY, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50:749–55. discussion 755–46.

    Article  PubMed  Google Scholar 

  7. Seckl J, Dunger D. Postoperative diabetes insipidus. BMJ. 1989;298:2–3.

    Article  CAS  PubMed  Google Scholar 

  8. McIver B, Connacher A, Whittle I, et al. Adipsic hypothalamic diabetes insipidus after clipping of anterior communicating artery aneurysm. BMJ. 1991;303:1465–7.

    Article  CAS  PubMed  Google Scholar 

  9. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, et al. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298:1429–38.

    Article  CAS  PubMed  Google Scholar 

  10. Crompton MR. Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain. 1963;86:301–14.

    Article  CAS  PubMed  Google Scholar 

  11. Klose M, Brennum J, Poulsgaard L, et al. Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clin Endocrinol. 2010;73:95–101. These two papers are amongst the few studies available examining acute pituitary function following subarachnoid hemorrhage.

    Google Scholar 

  12. Parenti G, Cecchi PC, Ragghianti B, et al. Evaluation of the anterior pituitary function in the acute phase after spontaneous subarachnoid hemorrhage. J Endocrinol Invest. 2011;34:361–5. These two papers are amongst the few studies available examining acute pituitary function following subarachnoid hemorrhage.

    CAS  PubMed  Google Scholar 

  13. Hamrahian AH, Oseni TS, Arafah BM. Measurements of serum free cortisol in critically ill patients. N Engl J Med. 2004;350:1629–38.

    Article  CAS  PubMed  Google Scholar 

  14. Gomis P, Graftieaux JP, Sercombe R, et al. Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2010;112:681–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hashi K, Takakura K, Sano K, et al. Intravenous hydrocortisone in large doses in the treatment of delayed ischemic neurological deficits following subarachnoid hemorrhage–results of a multi-center controlled double-blind clinical study. No To Shinkei. 1988;40:373–82.

    CAS  PubMed  Google Scholar 

  16. Coronado VG, Xu L, Basavaraju SV, et al. Surveillance for traumatic brain injury-related deaths—United States, 1997-2007. MMWR Surveill Summ. 2011;60:1–32.

    PubMed  Google Scholar 

  17. Agha A, Rogers B, Sherlock M, et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab. 2004;89:4929–36.

    Article  CAS  PubMed  Google Scholar 

  18. Agha A, Rogers B, Mylotte D, et al. Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol. 2004;60:584–91.

    Article  CAS  Google Scholar 

  19. Moro N, Katayama Y, Igarashi T, et al. Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol. 2007;68:387–93.

    Article  PubMed  Google Scholar 

  20. Cohan P, Wang C, McArthur DL, et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med. 2005;33:2358–66.

    Article  CAS  PubMed  Google Scholar 

  21. Watson NF, Barber JK, Doherty MJ, et al. Does glucocorticoid administration prevent late seizures after head injury? Epilepsia. 2004;45:690–4.

    Article  CAS  PubMed  Google Scholar 

  22. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10 008 adults with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet. 2004;364:1321–8.

    Article  PubMed  Google Scholar 

  23. Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365:1957–9.

    Article  PubMed  Google Scholar 

  24. Agha A, Thornton E, O'Kelly P, et al. Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab. 2004;89:5987–92.

    Article  CAS  PubMed  Google Scholar 

  25. Glynn N, Agha A. Which patient requires neuroendocrine assessment following traumatic brain injury, when and how? Clin Endocrinol. 2013;78:17–20. This article contains an in-depth review of the evaluation of acute and chronic pituitary injury following traumatic brain injury.

    Article  Google Scholar 

  26. Hensen J, Henig A, Fahlbusch R, et al. Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol. 1999;50:431–9.

    Article  CAS  Google Scholar 

  27. Kronenberg H, Williams RH. Williams textbook of endocrinology. 11th ed. Philadelphia, PA: Saunders/Elsevier; 2008.

    Google Scholar 

  28. Smith M. Physiologic changes during brain stem death–lessons for management of the organ donor. J Heart Lung Transplant. 2004;23:S217–22.

    Article  PubMed  Google Scholar 

  29. Ranasinghe AM, Bonser RS. Endocrine changes in brain death and transplantation. Best Pract Res Clin Endocrinol Metab. 2011;25:799–812.

    Article  CAS  PubMed  Google Scholar 

  30. Venkateswaran RV, Patchell VB, Wilson IC, et al. Early donor management increases the retrieval rate of lungs for transplantation. Ann Thorac Surg. 2008;85:278–86. discussion 286.

    Article  PubMed  Google Scholar 

  31. Nicolas-Robin A, Barouk JD, Amour J, et al. Hydrocortisone supplementation enhances hemodynamic stability in brain-dead patients. Anesthesiology. 2010;112:1204–10.

    Article  CAS  PubMed  Google Scholar 

  32. Venkateswaran RV, Dronavalli V, Lambert PA, et al. The proinflammatory environment in potential heart and lung donors: prevalence and impact of donor management and hormonal therapy. Transplantation. 2009;88:582–8.

    Article  CAS  PubMed  Google Scholar 

  33. Guesde R, Barrou B, Leblanc I, et al. Administration of desmopressin in brain-dead donors and renal function in kidney recipients. Lancet. 1998;352:1178–81.

    Article  CAS  PubMed  Google Scholar 

  34. Howlett TA, Keogh AM, Perry L, et al. Anterior and posterior pituitary function in brain-stem-dead donors. A possible role for hormonal replacement therapy. Transplantation. 1989;47:828–34.

    Article  CAS  PubMed  Google Scholar 

  35. Gramm HJ, Meinhold H, Bickel U, et al. Acute endocrine failure after brain death? Transplantation. 1992;54:851–7.

    Article  CAS  PubMed  Google Scholar 

  36. Randell TT, Hockerstedt KA. Triiodothyronine treatment in brain-dead multiorgan donors—a controlled study. Transplantation. 1992;54:736–8.

    Article  CAS  PubMed  Google Scholar 

  37. Goarin JP, Cohen S, Riou B, et al. The effects of triiodothyronine on hemodynamic status and cardiac function in potential heart donors. Anesth Analg. 1996;83:41–7.

    CAS  PubMed  Google Scholar 

  38. Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care. 2012;16:R203. This review and meta-analysis addresses management of glycemic control specifically with regards to neurocritical care patients.

    Article  PubMed  Google Scholar 

  39. Griesdale DE, Tremblay MH, McEwen J, Chittock DR. Glucose control and mortality in patients with severe traumatic brain injury. Neurocrit Care. 2009;11:311–6.

    Article  CAS  PubMed  Google Scholar 

  40. Dorhout Mees SM, van Dijk GW, Algra A, et al. Glucose levels and outcome after subarachnoid hemorrhage. Neurology. 2003;61:1132–3.

    Article  CAS  PubMed  Google Scholar 

  41. Badjatia N, Topcuoglu MA, Buonanno FS, et al. Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med. 2005;33:1603–9.

    Article  PubMed  Google Scholar 

  42. Passero S, Ciacci G, Ulivelli M. The influence of diabetes and hyperglycemia on clinical course after intracerebral hemorrhage. Neurology. 2003;61:1351–6.

    Article  PubMed  Google Scholar 

  43. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  44. Investigators N-SS, Finfer S, Chittock DR, et al. Intensive vs. conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  Google Scholar 

  45. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  CAS  PubMed  Google Scholar 

  46. Arabi YM, Dabbagh OC, Tamim HM, et al. Intensive vs. conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36:3190–7.

    Article  CAS  PubMed  Google Scholar 

  47. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300:933–44.

    Article  CAS  PubMed  Google Scholar 

  48. Ajaz F, Kudva YC, Erwin PJ. Residual dysphasia after severe hypoglycemia in a patient with immune-mediated primary adrenal insufficiency and type 1 diabetes mellitus: case report and systematic review of the literature. Endocr Pract. 2007;13:384–8.

    Article  PubMed  Google Scholar 

  49. Kurabayashi H, Kubota K, Tamura K, et al. Motor aphasia due to prolonged hypoglycaemic coma in a patient with insulin-dependent diabetes mellitus. J Int Med Res. 1996;24:487–91.

    CAS  PubMed  Google Scholar 

  50. Auer RN, Wieloch T, Olsson Y, Siesjo BK. The distribution of hypoglycemic brain damage. Acta Neuropathol. 1984;64:177–91.

    Article  CAS  PubMed  Google Scholar 

  51. Guettier JM, Gorden P. Hypoglycemia. Endocrinol Metab Clin North Am. 2006;35:753–66, viii–ix.

  52. Service FJ. Hypoglycemia. Endocrinol Metab Clin North Am. 1997;26:937–55.

    Article  CAS  PubMed  Google Scholar 

  53. Arem R, Wiener GJ, Kaplan SG, et al. Reduced tissue thyroid hormone levels in fatal illness. Metabolism. 1993;42:1102–8.

    Article  CAS  PubMed  Google Scholar 

  54. Attia J, Margetts P, Guyatt G. Diagnosis of thyroid disease in hospitalized patients: a systematic review. Arch Intern Med. 1999;159:658–65.

    Article  CAS  PubMed  Google Scholar 

  55. Spencer C, Eigen A, Shen D, et al. Specificity of sensitive assays of thyrotropin (TSH) used to screen for thyroid disease in hospitalized patients. Clin Chem. 1987;33:1391–6.

    CAS  PubMed  Google Scholar 

  56. Stathatos N, Levetan C, Burman KD, Wartofsky L. The controversy of the treatment of critically ill patients with thyroid hormone. Best Pract Res Clin Endocrinol Metab. 2001;15:465–78.

    Article  CAS  PubMed  Google Scholar 

  57. Slag MF, Morley JE, Elson MK, et al. Free thyroxine levels in critically ill patients. A comparison of currently available assays. JAMA. 1981;246:2702–6.

    Article  CAS  PubMed  Google Scholar 

  58. Slag MF, Morley JE, Elson MK, et al. Hypothyroxinemia in critically ill patients as a predictor of high mortality. JAMA. 1981;245:43–5.

    Article  CAS  PubMed  Google Scholar 

  59. Chinga-Alayo E, Villena J, Evans AT, Zimic M. Thyroid hormone levels improve the prediction of mortality among patients admitted to the intensive care unit. Intensive Care Med. 2005;31:1356–61.

    Article  PubMed  Google Scholar 

  60. Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63:1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Becker RA, Vaughan GM, Ziegler MG, et al. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit Care Med. 1982;10:870–5.

    Article  CAS  PubMed  Google Scholar 

  62. Klemperer JD, Klein I, Gomez M, et al. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med. 1995;333:1522–7.

    Article  CAS  PubMed  Google Scholar 

  63. Wartofsky L. Myxedema coma. Endocrinol Metab Clin North Am. 2006;35:687–98, vii–viii.

  64. Jellinek EH. Fits, faints, coma, and dementia in myxoedema. Lancet. 1962;2:1010–2.

    Article  CAS  PubMed  Google Scholar 

  65. Edwards GA. Neurologic manifestations of myxedema. Med Times. 1968;96:1125–30.

    CAS  PubMed  Google Scholar 

  66. Nieman EA. The electroencephalogram in myxoedema coma: clinical and electroencephalographic study of three cases. BMJ. 1959;1:1204–8.

    Article  CAS  PubMed  Google Scholar 

  67. River Y, Zelig O. Triphasic waves in myxedema coma. Clin Electroencephalogr. 1993;24:146–50.

    CAS  PubMed  Google Scholar 

  68. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581–9.

    Article  CAS  PubMed  Google Scholar 

  69. Human T, Onuoha A, Diringer M, Dhar R. Response to a bolus of conivaptan in patients with acute hyponatremia after brain injury. J Crit Care. 2012;27(745):e741–5.

    Google Scholar 

  70. Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11:14–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care. 2009;11:6–13.

    Article  CAS  PubMed  Google Scholar 

  72. Woo CH, Rao VA, Sheridan W, Flint AC. Performance characteristics of a sliding-scale hypertonic saline infusion protocol for the treatment of acute neurologic hyponatremia. Neurocrit Care. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  73. Shetty S, Inzucchi SE, Goldberg PA, et al. Adapting to the new consensus guidelines for managing hyperglycemia during critical illness: the updated Yale insulin infusion protocol. Endocr Pract. 2012;18:363–70.

    Article  PubMed  Google Scholar 

  74. Kunjan K, Lloyd FP. Automated blood sampling and glucose sensing in critical care settings. J Diabetes Sci Technol. 2008;2:194–200.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Skjaervold NK, Solligard E, Hjelme DR, Aadahl P. Continuous measurement of blood glucose: validation of a new intravascular sensor. Anesthesiology. 2011;114:120–5.

    Article  PubMed  Google Scholar 

  76. Holzinger U, Warszawska J, Kitzberger R, et al. Real-time continuous glucose monitoring in critically ill patients: a prospective randomized trial. Diabetes Care. 2010;33:467–72.

    Article  CAS  PubMed  Google Scholar 

  77. Brunner R, Kitzberger R, Miehsler W, et al. Accuracy and reliability of a subcutaneous continuous glucose-monitoring system in critically ill patients. Crit Care Med. 2011;39:659–64.

    Article  PubMed  Google Scholar 

  78. Goldberg PA, Siegel MD, Russell RR, et al. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol Ther. 2004;6:339–47.

    Article  PubMed  Google Scholar 

  79. Rabiee A, Andreasik V, Abu-Hamdah R, et al. Numerical and clinical accuracy of a continuous glucose monitoring system during intravenous insulin therapy in the surgical and burn intensive care units. J Diabetes Sci Technol. 2009;3:951–9.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Yamashita K, Okabayashi T, Yokoyama T, et al. Accuracy and reliability of continuous blood glucose monitor in postsurgical patients. Acta Anaesthesiol Scand. 2009;53:66–71.

    Article  CAS  PubMed  Google Scholar 

  81. Inzucchi SE, Kosiborod M. Continuous glucose monitoring during critical care. Anesthesiology. 2011;114:18–9.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Janice J. Hwang has received grant support from the Endocrine Fellows Foundation and NIH 5T32DK007058-39. David Y. Hwang declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice J. Hwang MD.

Additional information

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J.J., Hwang, D.Y. Treatment of Endocrine Disorders in the Neuroscience Intensive Care Unit. Curr Treat Options Neurol 16, 271 (2014). https://doi.org/10.1007/s11940-013-0271-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-013-0271-4

Keywords

Navigation