The ketogenic diet: Uses in epilepsy and other neurologic illnesses

Article

Opinion statement

The ketogenic diet is well established as therapy for intractable epilepsy. It should be considered first-line therapy in glucose transporter type 1 and pyruvate dehydrogenase deficiency. It should be considered early in the treatment of Dravet syndrome and myoclonic-astatic epilepsy (Doose syndrome).

Initial studies indicate that the ketogenic diet appears effective in other metabolic conditions, including phosphofructokinase deficiency and glycogen osis type V (McArdle disease). It appears to function in these disorders by providing an alternative fuel source. A growing body of literature suggests the ketogenic diet may be beneficial in certain neurodegenerative diseases, including Alzheimer disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In these disorders, the ketogenic diet appears to be neuroprotective, promoting enhanced mitochondrial function and rescuing adenosine triphosphate production.

Dietary therapy is a promising intervention for cancer, given that it may target the relative inefficiency of tumors in using ketone bodies as an alternative fuel source. The ketogenic diet also may have a role in improving outcomes in trauma and hypoxic injuries.

References and Recommended Reading

  1. 1.
    Bailey EE, Pfeifer HH, Thiele EA: The use of diet in the treatment of epilepsy. Epilepsy Behav 2005, 6:4–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Huttenlocher PR: Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res 1976, 10:536–540.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross DL, Swaiman KF, Torres F, Hansen J: Early biochemical and EEG correlates of the ketogenic diet in children with atypical absence epilepsy. Pediatr Neurol 1985, 1:104–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Thio LL, Wong M, Yamada KA: Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 2000, 54:325–331.PubMedGoogle Scholar
  5. 5.
    Rho JM, Anderson GD, Donevan SD, White HS: Acetoacetate, acetone, and dibenzylamine (a contaminant in L-(+)-beta-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo. Epilepsia 2002, 43:358–361.PubMedCrossRefGoogle Scholar
  6. 6.
    Ma W, Berg J, Yellen G: Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J Neurosci 2007, 27:3618–3625.PubMedCrossRefGoogle Scholar
  7. 7.
    Freeman J, Veggiotti P, Lanzi G, et al.: The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 2006, 68:145–180.PubMedCrossRefGoogle Scholar
  8. 8.
    Bough KJ, Rho JM: Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007, 48:43–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Puchowicz MA, Xu K, Sun X, et al.: Diet-induced ketosis increases capillary density without altered blood blow in rat brain. Am J Physiol Endocrinol Metab 2007, 292:E1607–E1615.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou W, Mukherjee P, Kiebish MA, et al.: The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (London) 2007, 4:5.CrossRefGoogle Scholar
  11. 11.
    Otto C, Kaemmerer U, Illert B, et al.: Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008, 8:122.PubMedCrossRefGoogle Scholar
  12. 12.
    Neal EG, Chaffe H, Schwartz RH, et al.: The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 2008, 7:500–506.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang D, Pascual JM, Yang H, et al.: Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 2005, 57:111–118.PubMedCrossRefGoogle Scholar
  14. 14.
    Wexler ID, Hemalatha SG, McConnell J, et al.: Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets. Studies in patients with identical mutations. Neurology 1997, 49:1655–1661.PubMedGoogle Scholar
  15. 15.
    Kossoff EH, Hedderick EF, Turner Z, Freeman JM: A case-control evaluation of the ketogenic diet versus ACTH for new-onset infantile spasms. Epilepsia 2008 Apr 10 (Epub ahead of print).Google Scholar
  16. 16.
    Caraballo RH, Cersosimo RO, Sakr D, et al.: Ketogenic diet in patients with myoclonic-astatic epilepsy. Epileptic Disord 2006, 8:151–155.PubMedGoogle Scholar
  17. 17.
    Korff C, Laux L, Kelley K, et al.: Dravet syndrome (severe myoclonic epilepsy in infancy): a retrospective study of 16 patients. J Child Neurol 2007, 22:185–194.PubMedCrossRefGoogle Scholar
  18. 18.
    Oguni H, Tanaka T, Hayashi K, et al.: Treatment and long-term prognosis of myoclonic-astatic epilepsy of early childhood. Neuropediatrics 2002, 33:122–132.PubMedCrossRefGoogle Scholar
  19. 19.
    Hemingway C, Freeman JM, Pillas DJ, Pyzik PL: The ketogenic diet: a 3-to 6-year follow up of 150 children enrolled prospectively. Pediatrics 2001, 108:898–905.PubMedCrossRefGoogle Scholar
  20. 20.
    Marsh EB, Freeman JM, Kossoff EH, et al.: The outcome of children with intractable seizures: a 3-to 6-year follow-up of 67 children who remained on the ketogenic diet less than one year. Epilepsia 2006, 47:425–430.PubMedCrossRefGoogle Scholar
  21. 21.
    Swoboda KJ, Specht L, Jones HR, et al.: Infantile phosphofructokinase deficiency with arthrogryposis: clinical benefit of a ketogenic diet. J Pediatr 1997, 131:932–934.PubMedCrossRefGoogle Scholar
  22. 22.
    Busch V, Gempel K, Hack A, et al.: Treatment of glycogenosis type V with ketogenic diet [letter]. Ann Neurol 2005, 58:341.PubMedCrossRefGoogle Scholar
  23. 23.
    Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (London) 2005, 2:30.CrossRefGoogle Scholar
  24. 24.
    Nebeling LC, Miraldi F, Shurin SB, Lerner E: Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995, 14:202–208.PubMedGoogle Scholar
  25. 25.
    Freeland SJ, Mavropoulos J, Wang A, et al.: Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 2008, 68:11–19.CrossRefGoogle Scholar
  26. 26.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008, 7:11–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Prins ML, Fujima LS, Hovda DA: Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 2005, 82:413–420.PubMedCrossRefGoogle Scholar
  28. 28.
    Tai KK, Truong DD: Ketogenic diet prevents seizures and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia. Neurosci Lett 2007, 425:34–38.PubMedCrossRefGoogle Scholar
  29. 29.
    Tai KK, Nguyen N, Pham L, Truong DD: Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. J Neural Transm 2008, 115:1011–1017.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Zaid NS, Dashti HM, Mathew TC, Juggi JS: Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol 2007, 62:381–389.PubMedCrossRefGoogle Scholar
  31. 31.
    Maswood N, Young J, Tilmont E, et al.: Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004, 101:18171–18176.PubMedCrossRefGoogle Scholar
  32. 32.
    Qin W, Ho L, Zhao Z, et al.: Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006, 281:21745–21754.PubMedCrossRefGoogle Scholar
  33. 33.
    Guarente L: Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 2008, 132:171–176.PubMedCrossRefGoogle Scholar
  34. 34.
    Ramamurthy S, Ronnett GV: Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol 2006, 574:85–93.PubMedCrossRefGoogle Scholar
  35. 35.
    Garriga-Canut M, Schoenike B, Qazi R, et al.: 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 2006, 9:1382–1387.PubMedCrossRefGoogle Scholar
  36. 36.
    Lian XY, Khan FA, Stringer JL: Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J Neurosci 2007, 27:12007–12011.PubMedCrossRefGoogle Scholar
  37. 37.
    Kashiwaya Y, Takeshima T, Mori N, et al.: D-betahydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci U S A 2000, 97:5440–5444.PubMedCrossRefGoogle Scholar
  38. 38.
    Tieu K, Perier C, Caspersen C, et al.: D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003, 112:892–901.PubMedGoogle Scholar
  39. 39.
    VanItallie TB, Nonas C, Di Rocco A, et al.: Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 2005, 64:728–730.PubMedGoogle Scholar
  40. 40.
    Jabre MG, Bejjani BP: Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study [letter]. Neurology 2006, 66:617.PubMedCrossRefGoogle Scholar
  41. 41.
    Van der Auwera I, Wera S, Van Leuven F, Henderson ST: A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (London) 2005, 2:28.CrossRefGoogle Scholar
  42. 42.
    Henderson ST: High carbohydrate diets and Alzheimer’s disease. Med Hypotheses 2004, 62:689–700.PubMedCrossRefGoogle Scholar
  43. 43.
    Reger MA, Henderson ST, Hale C, et al.: Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 2002, 25:311–314.CrossRefGoogle Scholar
  44. 44.
    Kotani S, Sakaguchi E, Warashina S, et al.: Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 2006, 56:159–164.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashimoto M, Hossain S, Shimada T, et al.: Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J Neurochem 2002, 81:1084–1091.PubMedCrossRefGoogle Scholar
  46. 46.
    Lim GP, Calon F, Morihara T, et al.: A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005, 25:3032–3040.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao Z, Lange DJ, Voustianiouk A, et al.: A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 2006, 7:29.PubMedCrossRefGoogle Scholar
  48. 48.
    Bough KJ, Wetherington J, Hassel B, et al.: Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 2006, 60:223–235.PubMedCrossRefGoogle Scholar
  49. 49.
    Maalouf M, Sullivan PG, Davis L, et al.: Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 2007, 145:256–264.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim DY, Davis LM, Sullivan PG, et al.: Ketone bodies are protective against oxidative stress in neocortical neurons. J Neurochem 2007, 101:1316–1326.CrossRefGoogle Scholar
  51. 51.
    Evangeliou A, Vlachonikolis I, Mihaildou H, et al.: Application of a ketogenic diet in children with autistic behavior: pilot study. J Child Neurol 2003, 18:113–118.PubMedCrossRefGoogle Scholar
  52. 52.
    Murphy P, Likhodii S, Nylen K, Burnham WM: The antidepressant properties of the ketogenic diet. Biol Psychiatry 2004, 56:981–983.PubMedCrossRefGoogle Scholar
  53. 53.
    Strahlman RS: Can ketosis help migraine sufferers? A case report. Headache 2006, 46:182.PubMedCrossRefGoogle Scholar
  54. 54.
    Husain AM, Yancy ST, Carwile PP, et al.: Diet therapy for narcolepsy. Neurology 2004, 62:2300–2302.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.John M. Freeman Pediatric Epilepsy CenterJohns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations