Skip to main content

Advertisement

Log in

Glioblastoma multiforme

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Patients with newly diagnosed glioblastoma multiforme should undergo a maximal tumor resection and then, whenever possible, should be entered into a clinical trial. The current standard of care consists of external beam irradiation, to a total of 60 Gy over 6 weeks, in combination with low-dose daily temozolomide, followed by at least six cycles of adjuvant temozolomide. If radiotherapy and a temozolomide-based adjuvant regimen fail, the most active treatment approach appears to be bevacizumab and irinotecan. Molecular therapy, with drugs targeting growth factor receptors and critical signal transduction pathway mediators, is also under active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Louis DN, Ohgaki H, Wiestler OD, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114:97–109.

    Article  PubMed  Google Scholar 

  2. Miller CR, Perry A: Glioblastoma. Morphologic and molecular genetic diversity. Arch Pathol Lab Med 2007, 131:397–406.

    PubMed  Google Scholar 

  3. Newton HB, Malkin MG: Overview of brain tumor epidemiology. In Handbook of Neuro-Oncology Neuroimaging. Edited by Newton HB, Jolesz FA. Amsterdam: Elsevier/ Academic Press; 2007: 341–354.

    Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352:987–996.

    Article  PubMed  CAS  Google Scholar 

  5. Mirimanoff R, Mason W, Van den Bent M, et al.: Is long-term survival in glioblastoma possible? Updated results of the EORTC/NCIC phase III randomized trial on radiotherapy (RT) and concomitant adjuvant temozolomide (TMZ) versus RT alone [abstract]. Int J Radiat Oncol Biol Phys 2007, 69:S2.

    Google Scholar 

  6. Cavaliere R, Wen PY, Schiff D: Novel therapies for malignant gliomas. Neurol Clin 2007, 25:1041–1071.

    Article  Google Scholar 

  7. Chinot OL, Barrié M, Fuentes S, et al.: Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol 2007, 25:1470–1475.

    Article  PubMed  CAS  Google Scholar 

  8. Newton HB, Dalton J, Figg G, et al.: Long-term therapy of brain tumors with temozolomide: review of tolerability and efficacy in 47 patients [abstract]. Neuro Oncol 2007, 9:522–523.

    Google Scholar 

  9. Chamberlain MC, Chalmers L: A pilot study of primary temozolomide chemotherapy and deferred radiotherapy in elderly patients with glioblastoma. J Neurooncol 2007, 82:207–209.

    Article  PubMed  Google Scholar 

  10. Groves MD, Puduvalli VK, Chang SM, et al.: A North American brain tumor consortium (NABTC 99-04) phase II trial of temozolomide plus thalidomide for recurrent glioblastoma multiforme. J Neurooncol 2007, 81:271–277.

    Article  PubMed  CAS  Google Scholar 

  11. Hegi ME, Diserens AC, Gorlia T, et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005, 352:997–1003. l outcome.

    Article  PubMed  CAS  Google Scholar 

  12. Paz MF, Yaya-Tur R, Rojas-Marcos I, et al.: CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 2004, 10:4933–4938.

    Article  PubMed  CAS  Google Scholar 

  13. Hegi ME, Diserens AC, Godard S, et al.: Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 2004, 10:1871–1874.

    Article  PubMed  CAS  Google Scholar 

  14. Crinière E, Kaloshi G, Laigle-Donadey F, et al.: MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. J Neurooncol 2007, 83:173–179.

    Article  PubMed  Google Scholar 

  15. Mischel PS, Cloughesy TF: Targeted molecular therapy of glioblastoma. Brain Pathol 2004, 13:52–61.

    Article  Google Scholar 

  16. Newton HB: Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev Anticancer Ther 2003, 3:595–614.

    Article  PubMed  CAS  Google Scholar 

  17. Newton HB: Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004, 4:105–128.

    Article  PubMed  CAS  Google Scholar 

  18. Newton HB: Molecular neuro-oncology and the development of “targeted” therapeutic strategies for brain tumors. Part 5—apoptosis and cell cycle. Expert Rev Anticancer Ther 2005, 5:355–378.

    Article  PubMed  CAS  Google Scholar 

  19. Sathornsumetee S, Reardon DA, Desjardins A, et al.: Molecularly targeted therapy for malignant gliomas. Cancer 2007, 110:13–24.

    Article  PubMed  Google Scholar 

  20. Newton HB: Small-molecule and antibody approaches to molecular chemotherapy of primary brain tumors. Curr Opin Investig Drugs 2007, 8:1009–1021.

    PubMed  CAS  Google Scholar 

  21. Viola FS, Katz A, Arantes A, et al.: Phase II trial of high dose imatinib in recurrent glioblastoma multiforme (GBM) with platelet derived growth factor receptor (PDGFR) expression [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):89s.

    Google Scholar 

  22. Dresemann G, Hosius C, Nikolova Z, Letvak L: Single center phase II trial analyzing the role of imatinib/hydroxyurea in patients with pretreated non-progressive glioblastoma (GBM) as maintenance treatment [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):88s.

    Google Scholar 

  23. Dresemann G, Rosenthal M, Höffken K, et al.: Imatinib plus hydroxyurea versus hydroxyurea monotherapy in progressive glioblastoma (GBM)—an international open label randomized phase III study (Ambrosia-Study) [abstract]. Neuro Oncol 2007, 9:519.

    Google Scholar 

  24. Sathornsumetee S, Rich JN, Vredenburgh JJ, et al.: Phase I trial of imatinib mesylate, hydroxyurea, and vatalanib for patients with recurrent glioblastoma multiforme (GBM) [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):81s.

    Google Scholar 

  25. Franceschi E, Cavallo G, Lonardi S, et al.: Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 2007, 96:1047–1051.

    Article  PubMed  CAS  Google Scholar 

  26. Van Den Bent MJ, Brandes AA, Rampling R, et al.: Randomized phase II trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent glioblastoma multiforme (GBM): EORTC 26034 [abstract]. Neuro Oncol 2007, 9:522.

    Google Scholar 

  27. DeGroot JF, Gilbert MR, Hess KR, et al.: Phase II study of combination carboplatin and erlotinib in patients with recurrent glioblastoma multiforme [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):81s.

    Google Scholar 

  28. Robins HI, Wen PY, Chang SM, et al.: Phase I study of erlotinib and CCI-779 (temsirolimus) for patients with recurrent malignant gliomas (MG) (NABTC 0402) [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):89s.

    Google Scholar 

  29. Prados M, DeBoer R, Chang S, et al.: Phase II study of tarceva plus temodar during and following radiotherapy in patients newly diagnosed with glioblastoma or gliosarcoma [abstract]. Neuro Oncol 2007, 9:528.

    Google Scholar 

  30. Lassman A, Holland E, DeAngelis L, et al.: Clinical and molecular-metabolic phase II trial of perifosine for recurrent/ progressive malignant glioma [abstract]. Neuro Oncol 2007, 9:518–519.

    Google Scholar 

  31. Sartore-Bianchi A, Ricotta R, Cerea G, et al.: Rationale and clinical results of multi-target treatments in oncology. Int J Biol Markers 2007, 22(Suppl 4):S77–S87.

    PubMed  CAS  Google Scholar 

  32. Wilhelm S, Carter C, Lynch M, et al.: Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Rev Drug Discov 2007, 5:835–844.

    Google Scholar 

  33. Nabors LB, Rosenfeld M, Chamberlain M, et al.: A phase I trial of sorafenib (BAY 43-9006) for patients with recurrent or progressive malignant glioma (NABTT 0401) [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):89s.

    Google Scholar 

  34. Folkman J: Clinical applications of research on angiogenesis. N Engl J Med 1995, 333:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  35. Cavallaro U, Christofori G: Molecular mechanisms of tumor angiogenesis and tumor progression. J Neurooncol 2000, 50:63–70.

    Article  PubMed  CAS  Google Scholar 

  36. Webb CP, Vande Woude GF: Genes that regulate metastasis and angiogenesis. J Neurooncol 2000, 50:71–87.

    Article  PubMed  CAS  Google Scholar 

  37. Plate KH: Mechanisms of angiogenesis in the brain [review]. J Neuropath Exp Neurol 1999, 58:313–320.

    Article  PubMed  CAS  Google Scholar 

  38. Jensen RL: Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 1998, 49:189–196.

    Article  PubMed  CAS  Google Scholar 

  39. Dunn IF, Heese O, Black PM: Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 2000, 50:121–137.

    Article  PubMed  CAS  Google Scholar 

  40. Zagzag D, Zhong H, Scalzitti JM, et al.: Expression of hypoxia-inducible factor 1α in brain tumors. Association with angiogenesis, invasion, and progression. Cancer 2000, 88:2606–2618.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang BH, Jiang G, Zheng JZ, et al.: Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001, 12:363–369.

    PubMed  CAS  Google Scholar 

  42. Wen S, Stolarov J, Myers MP, et al.: PTEN controls tumorinduced angiogenesis. Proc Natl Acad Sci U S A 2001, 98:4622–4627.

    Article  PubMed  CAS  Google Scholar 

  43. Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005, 23:1011–1027.

    Article  PubMed  CAS  Google Scholar 

  44. Levine AM, Tulpule A, Quinn DI, et al.: Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol 2006, 24:1712–1719.

    Article  PubMed  CAS  Google Scholar 

  45. Wachsberger PR, Burd R, Cardi C, et al.: VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys 2007, 67:1526–1537.

    PubMed  CAS  Google Scholar 

  46. Ranieri G, Patruno R, Ruggieri E, et al.: Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr Med Chem 2006, 13:1845–1857.

    Article  PubMed  CAS  Google Scholar 

  47. Shih T, Lindley C: Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Therap 2006, 28:1779–1802.

    Article  CAS  Google Scholar 

  48. Kunkel P, Ulbricht U, Bohlen P, et al.: Inhibition of intracranial glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001, 61:6624–6628.

    PubMed  CAS  Google Scholar 

  49. Stefanik DF, Fellows WK, Rizkalla LR, et al.: Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 2001, 55:91–100.

    Article  PubMed  CAS  Google Scholar 

  50. Stark-Vance V: Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma [abstract 342]. Neuro Oncol 2005, 7:369.

    Google Scholar 

  51. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al.: Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007, 13:1253–1259.

    Article  PubMed  CAS  Google Scholar 

  52. Goli KJ, Desjardins A, Herndon JE, et al.: Phase II trial of bevacizumab and irinotecan in the treatment of malignant gliomas [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):75s.

    Google Scholar 

  53. Vredenburgh JJ, Desjardins A, Herndon JE, et al.: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007, 25:4722–4729.

    Article  PubMed  CAS  Google Scholar 

  54. Kang T, Jin T, Peereboom D: Irinotecan and bevacizumab in progressive primary brain tumors: the Cleveland Clinic experience [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):94s.

    Google Scholar 

  55. Raval S, Hwang S, Dorsett L: Bevacizumab and irinotecan in patients with recurrent glioblastoma multiforme (GBM) [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):94s.

    Google Scholar 

  56. Hasselbalch B, Lassen U, Grunnet K, et al.: Bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), and irinotecan for treatment of recurrent primary malignant brain tumors in adults. Neuro Oncol 2007, 9:514.

    Google Scholar 

  57. Raizer JJ, Gallot L, Cohn R, et al.: A phase II safety study of bevacizumab in patients with multiple recurrent or progressive malignant gliomas [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):94s.

    Google Scholar 

  58. Pope WB, Lai A, Nghiemphu P, et al.: MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006, 66:1258–1260.

    Article  PubMed  CAS  Google Scholar 

  59. Chen W, Delaloye S, Silverman DHS, et al.: Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007, 25:4714–4721.

    Article  PubMed  CAS  Google Scholar 

  60. Gordon MS, Cunningham D: Managing patients treated with bevacizumab combination therapy. Oncology 2005, 69(Suppl 3):25–33.

    Article  PubMed  CAS  Google Scholar 

  61. Goldbrunner RH, Bendszus M, Wood J, et al.: PTK787/ ZK2222584, an inhibitor of vascular endothelial growth factor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 2004, 55:426–432.

    PubMed  Google Scholar 

  62. Scott EN, Meinhardt G, Jacques C, et al.: Vatalanib: the clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin Investig Drugs 2007, 16:367–379.

    Article  PubMed  CAS  Google Scholar 

  63. Brandes AA, Stupp R, Hau P, et al.: EORTC study 26041-22041: Phase I/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with or without PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma-results of a phase I trial [abstract 2026]. J Clin Oncol 2007, 25(June 20 Suppl):81s.

    Google Scholar 

  64. Wedge SR, Kendrew J, Hennequin LE, et al.: AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005, 65:4389–4400.

    Article  PubMed  CAS  Google Scholar 

  65. Batchelor TT, Sorensen AG, de Tomaso E, et al.: AZD2171, a pan VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11:83–95.

    Article  PubMed  CAS  Google Scholar 

  66. Batchelor T, Sorensen AG, Ancukiewicz M, et al.: A phase II trial of AZD2171 (cediranib), an oral pan-VEGF receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma [abstract]. J Clin Oncol 2007, 25(June 20 Suppl):75s.

    Google Scholar 

  67. Asthagiri AR, Pouratian N, Sherman J, et al.: Advances in brain tumor surgery. Neurol Clin 2007, 25:975–1003.

    Article  PubMed  Google Scholar 

  68. Stieber VW, Mehta MP: Advances in radiation therapy for brain tumors. Neurol Clin 2007, 25:1005–1033.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert B. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, H.B. Glioblastoma multiforme. Curr Treat Options Neurol 10, 285–294 (2008). https://doi.org/10.1007/s11940-008-0031-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-008-0031-z

Keywords

Navigation