Skip to main content

Advertisement

Log in

Precision Approaches to Pancreatic Cancer Therapy: What Now and What Next?

  • Pancreas(C Forsmark, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of Review

With recent advances in the understanding of the molecular landscape of pancreas ductal adenocarcinoma (PDAC), genomic-driven treatment approaches are gaining traction. The aim of this review is to summarize and evaluate recent developments in this area and to provide perspectives on the future of precision medicine in PDAC.

Recent Findings

In a subset of patients with PDAC, a biomarker-driven approach to treatment is increasing therapeutic options and improving outcomes for patients. Investigational approaches to areas such as DNA damage repair (DDR), targeting the stroma, tumor metabolism and immunotherapy are changing the treatment paradigm of PDAC in 2022 and beyond.

Summary

A precision medicine approach is becoming increasingly important in the management of PDAC. Germline BRCA (gBRCA), microsatellite instability and rare fusions are validated therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • American Cancer Society. Cancer Facts & Figures 2022. Atlanta: American Cancer Society. 2022. Reporting the most recent trends in cancer epidemiology in the USA.

  2. Rahib L, Smith B, Aizenberg R, Rosenzweig A, Fleshman J, Matrisian L. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Can Res. 2014;74(11):2913–21.

    Article  CAS  Google Scholar 

  3. Mizrahi J, Surana R, Valle J, Shroff R. Pancreatic cancer. The Lancet. 2020;395(10242):2008–20.

    Article  CAS  Google Scholar 

  4. Siegel R, Miller K, Jemal A. Cancer statistics. CA: A Cancer J Clin. 2020;70(1):7–30.

    Google Scholar 

  5. Dunne R, Hezel A. Genetics and biology of pancreatic ductal adenocarcinoma. Hematol Oncol Clin North Am. 2015;29(4):595–608.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • National Comprehensive Cancer Network. Pancreatic adenocarcinoma, version 2.2019. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Published 2019. Accessed January 5, 2022. The most recent NCCN guidelines, providing comprehensive guidance for the diagnosis and management of PDAC.

  7. Sohal D, Kennedy E, Cinar P, Conroy T, Copur M, Crane C, et al. Metastatic pancreatic cancer: ASCO guideline update. J Clin Oncol. 2020;38(27):3217–30.

    Article  Google Scholar 

  8. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salo-Mullen E, O’Reilly E, Kelsen D, Ashraf A, Lowery M, Yu K, et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121(24):4382–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lowery M, Wong W, Jordan E, Lee J, Kemel Y, Vijai J, et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. JNCI J Natl Cancer Inst. 2018;110(10):1067–74.

    Article  PubMed  CAS  Google Scholar 

  11. Teo M, O’Reilly E. Is it time to split strategies to treat homologous recombinant deficiency in pancreas cancer? J Gastrointest Oncol. 2016;7(5):738–49.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stadler Z, Maio A, Chakravarty D, Kemel Y, Sheehan M, Salo-Mullen E, et al. Therapeutic implications of germline testing in patients with advanced cancers. J Clin Oncol. 2021;39(24):2698–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, et al. OncoKB: A precision oncology knowledge base. JCO Precis Oncol. 2017;1:1–16.

    Google Scholar 

  14. Pishvaian M, Blais E, Brody J, Lyons E, DeArbeloa P, Hendifar A, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the know your tumor registry trial. Lancet Oncol. 2020;21(4):508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moynahan M, Pierce A, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 2001;7(2):263–72.

    Article  CAS  PubMed  Google Scholar 

  16. Moynahan M, Chiu J, Koller B, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell. 1999;4(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  17. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006;22(6):719–29.

    Article  CAS  PubMed  Google Scholar 

  18. Curtin N. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12(12):801–17.

    Article  CAS  PubMed  Google Scholar 

  19. Park W, Chen J, Chou J, Varghese A, Yu K, Wong W, et al. Genomic methods identify homologous recombination deficiency in pancreas adenocarcinoma and optimize treatment selection. Clin Cancer Res. 2020;26(13):3239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Momtaz P, O’Connor C, Chou J, Capanu M, Park W, Bandlamudi C, et al. Pancreas cancer and BRCA : A critical subset of patients with improving therapeutic outcomes. Cancer. 2021;127(23):4393–402.

    Article  CAS  PubMed  Google Scholar 

  21. Golan T, O’Kane G, Denroche R, Raitses-Gurevich M, Grant R, Holter S, et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology. 2021;160(6):2119-2132.e9.

    Article  CAS  PubMed  Google Scholar 

  22. Ashworth A. A synthetic lethal therapeutic approach: Poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in dna double-strand break repair. J Clin Oncol. 2008;26(22):3785–90.

    Article  CAS  PubMed  Google Scholar 

  23. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall M, et al. Maintenance olaparib for germline brca-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall M et al. Overall survival from the phase 3 POLO trial: Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. J Clin Oncol. 2021;39(3_suppl):378–378. Results of the POLO trial, which led to FDA approval of maintenance Olaparib in patients with PDAC who have a germline BRCA mutation.

  25. Hall M, Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, et al. Pancreatic cancer (PaC)-specific health-related quality of life (HRQoL) with maintenance olaparib (O) in patients (pts) with metastatic (m) PaC and a germline BRCA mutation (gBRCAm): Phase III POLO trial. J Clin Oncol. 2020;38(4_suppl):648–648.

    Article  Google Scholar 

  26. Reiss K, Mick R, O’Hara M, Teitelbaum U, Karasic T, Schneider C, et al. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. J Clin Oncol. 2021;39(22):2497–505.

    Article  CAS  PubMed  Google Scholar 

  27. Domchek S, Hendifar A, McWilliams R, Geva R, Epelbaum R, Biankin A, et al. RUCAPANC: An open-label, phase 2 trial of the PARP inhibitor rucaparib in patients (pts) with pancreatic cancer (PC) and a known deleterious germline or somatic BRCA mutation. J Clin Oncol. 2016;34(15_suppl):4110–4110.

    Article  Google Scholar 

  28. Lowery M, Kelsen D, Capanu M, Smith S, Lee J, Stadler Z, et al. Phase II trial of veliparib in patients with previously treated BRCA-mutated pancreas ductal adenocarcinoma. Eur J Cancer. 2018;89:19–26.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Liu Z, Wu N, Chen Y, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19(1):107.

  30. D’Andrea A. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;71:172–6.

    Article  PubMed  CAS  Google Scholar 

  31. O’Reilly E, Lee J, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J Clin Oncol. 2020;38(13):1378–88.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seeber A, Puccini A, Xiu J, Goldberg R, Grothey A, Shields A, et al. Association of BRCA-mutant pancreatic cancer with high tumor mutational burden (TMB) and higher PD-L1 expression. J Clin Oncol. 2019;37(15_suppl):4133–4133.

    Article  Google Scholar 

  33. Mouw K, Goldberg M, Konstantinopoulos P, D’Andrea A. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017;7(7):675–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front Oncol. 2020;28(10):570.

    Article  Google Scholar 

  35. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen M, Hsu J, et al. PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clin Cancer Res. 2017;23(14):3711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waddell N, Pajic M, Patch A, Chang D, Kassahn K, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh R, Goldberg J, Varghese A, Yu K, Park W, O’Reilly E. Genomic profiling in pancreatic ductal adenocarcinoma and a pathway towards therapy individualization: A scoping review. Cancer Treat Rev. 2019;75:27–38.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tutt A, Garber J, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu Z, Shia J, Stadler Z, Varghese A, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clin Cancer Res. 2018;24(6):1326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95.

    Article  CAS  PubMed  Google Scholar 

  41. Le D, Durham J, Smith K, Wang H, Bartlett B, Aulakh L, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Humphris J, Patch A, Nones K, Bailey P, Johns A, McKay S, et al. Hypermutation in pancreatic cancer. Gastroenterology. 2017;152(1):68-74.e2.

    Article  CAS  PubMed  Google Scholar 

  43. • Marabelle A, Le D, Ascierto P, Di Giacomo A, De Jesus-Acosta A, Delord J et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10. Data pertaining to the efficacy of pembrolizumab in MSI-H noncolorectal solid tumors, including PDAC, which has FDA approval.

  44. Stromnes I, DelGiorno K, Greenberg P, Hingorani S. Stromal reengineering to treat pancreas cancer. Carcinogenesis. 2014;35(7):1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vonderheide R, Bayne L. Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol. 2013;25(2):200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brahmer J, Tykodi S, Chow L, Hwu W, Topalian S, Hwu P, et al. Safety and activity of anti–pd-l1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Royal R, Levy C, Turner K, Mathur A, Hughes M, Kammula U, et al. Phase 2 trial of single agent ipilimumab (Anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Reilly E, Oh D, Dhani N, Renouf D, Lee M, Sun W, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma. JAMA Oncol. 2019;5(10):1431.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Weiss G, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs. 2017;36(1):96–102.

    Article  PubMed  CAS  Google Scholar 

  50. Renouf D, Knox J, Kavan P, Jonker D, Welch S, Couture F, et al. LBA65 the canadian cancer trials group PA.7 trial: Results of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs GEM, nab-P, durvalumab (D) and tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). Ann Oncol. 2020;31:1195.

    Article  Google Scholar 

  51. Renouf D, Loree J, Knox J, Kavan P, Jonker D, Welch S, et al. Predictive value of plasma tumor mutation burden (TMB) in the CCTG PA.7 trial: Gemcitabine (GEM) and nab-paclitaxel (Nab-P) vs. GEM, nab-P, durvalumab (D) and tremelimumab (T) as first line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol. 2021;39(3_suppl):411–411.

    Article  Google Scholar 

  52. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.

    Article  PubMed  Google Scholar 

  53. O’Hara M, O’Reilly E, Varadhachary G, Wolff R, Wainberg Z, Ko A, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 2021;22(1):118–31.

    Article  CAS  PubMed  Google Scholar 

  54. O’Hara M, O’Reilly E, Wolff R, Wainberg Z, Ko A, Rahma O, et al. Gemcitabine (Gem) and nab-paclitaxel (NP) ± nivolumab (nivo) ± CD40 agonistic monoclonal antibody APX005M (sotigalimab), in patients (Pts) with untreated metastatic pancreatic adenocarcinoma (mPDAC): Phase (Ph) 2 final results. J Clin Oncol. 2021;39(15_suppl):4019–4019.

    Article  Google Scholar 

  55. Von Hoff D, Ervin T, Arena F, Chiorean E, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.

    Article  CAS  Google Scholar 

  56. Seo Y, Jiang X, Sullivan K, Jalikis F, Smythe K, Abbasi A, et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin Cancer Res. 2019;25(13):3934–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin B, Stemmer S, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 2020;26(6):878–85.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang B. CD73: A Novel Target for Cancer Immunotherapy: Figure 1. Can Res. 2010;70(16):6407–11.

    Article  CAS  Google Scholar 

  59. Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020;13(1):130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Waters A, Der C. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2017;8(9):a031435.

    Article  CAS  Google Scholar 

  61. Belda-Iniesta C, Ibáñezde Cáceres I, Barriuso J, de Castro Carpeño J, González Barón M, Feliú J. Molecular biology of pancreatic cancer. Clin Translat Oncol. 2008;10(9):530–7.

    Article  CAS  Google Scholar 

  62. Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, Horii A. Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep. 2001;8(1):89–92.

    CAS  PubMed  Google Scholar 

  63. Zorde Khvalevsky E, Gabai R, Rachmut I, Horwitz E, Brunschwig Z, Orbach A, et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci. 2013;110(51):20723–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hong D, Kuo J, Sacher A, Barlesi F, Besse B, Kuboki Y, et al. CodeBreak 100: Phase I study of AMG 510, a novel KRASG12C inhibitor, in patients (pts) with advanced solid tumors other than non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). J Clin Oncol. 2020;38(15_suppl):3511–3511.

    Article  Google Scholar 

  65. Zhou L, Baba Y, Kitano Y, Miyake K, Zhang X, Yamamura K et al. KRAS, BRAF, and PIK3CA mutations, and patient prognosis in 126 pancreatic cancers: pyrosequencing technology and literature review. Med Oncol 2016;33(4).

  66. Hong D, Fakih M, Strickler J, Desai J, Durm G, Shapiro G, et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020;383(13):1207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bekaii-Saab T, Spira A, Yaeger R, Buchschacher G, McRee A, Sabari J, et al. KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harbouring a KRASG12C mutation. J Clin Oncol. 2022;40(4_suppl):519–519.

    Article  Google Scholar 

  68. Hofmann M, Gmachl M, Ramharter J, Savarese F, Gerlach D, Marszalek J, et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined mek inhibition. Cancer Discov. 2020;11(1):142–57.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Golan T, Khvalevsky E, Hubert A, Gabai R, Hen N, Segal A, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 2015;6(27):24560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Varghese A, Ang C, Dimaio C, Javle M, Gutierrez M, Yarom N, et al. A phase II study of siG12D-LODER in combination with chemotherapy in patients with locally advanced pancreatic cancer (PROTACT). J Clin Oncol. 2020;38(15):TPS4672.

    Article  Google Scholar 

  71. Nagasaka M, Potugari B, Nguyen A, Sukari A, Azmi A, Ou S. KRAS Inhibitors– yes but what next? Direct targeting of KRAS– vaccines, adoptive T cell therapy and beyond. Cancer Treat Rev. 2021;101:102309.

    Article  CAS  PubMed  Google Scholar 

  72. • Balachandran V, Łuksza M, Zhao J, Makarov V, Moral J, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–6 (Building on this concept, custom-made vaccines targeting patient-specific tumor neoantigens are postulated to stimulate an immune response.).

  73. Bryant K, Stalnecker C, Zeitouni D, Klomp J, Peng S, Tikunov A, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karasic T, O’Hara M, Loaiza-Bonilla A, Reiss K, Teitelbaum U, Borazanci E, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer. JAMA Oncol. 2019;5(7):993.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kinsey C, Camolotto S, Boespflug A, Guillen K, Foth M, Truong A, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin E, Li L, Guan Y, Soriano R, Rivers C, Mohan S, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res. 2009;7(9):1466–76.

    Article  CAS  PubMed  Google Scholar 

  77. Singhi A, Ali S, Lacy J, Hendifar A, Nguyen K, Koo J, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2017;15(5):555–62.

    Article  PubMed  Google Scholar 

  78. Tuli R, Lo S, Koo J, Pishvaian M, Bender R, Petricoin E, et al. Anaplastic lymphoma kinase rearrangement and response to crizotinib in pancreatic ductal adenocarcinoma. JCO Precis Oncol. 2017;1:1–5.

    PubMed  Google Scholar 

  79. Gower A, Golestany B, Gong J, Singhi A, Hendifar A. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to alectinib and lorlatinib. JCO Precis Oncol. 2020;4:865–70.

    Article  Google Scholar 

  80. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin Oncol. 2019;17(2):108–23.

    Article  PubMed  Google Scholar 

  81. Drilon A, Laetsch T, Kummar S, DuBois S, Lassen U, Demetri G, et al. Efficacy of larotrectinib in trk fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Reilly E, Hechtman J. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol. 2019;30:viii36–40.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Doebele R, Drilon A, Paz-Ares L, Siena S, Shaw A, Farago A, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):271–82.

    Article  CAS  PubMed  Google Scholar 

  84. Kato S, Subbiah V, Marchlik E, Elkin S, Carter J, Kurzrock R. RET aberrations in diverse cancers: Next-generation sequencing of 4,871 patients. Clin Cancer Res. 2016;23(8):1988–97.

    Article  PubMed  CAS  Google Scholar 

  85. Gainor J, Curigliano G, Kim D, Lee D, Besse B, Baik C, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol. 2021;22(7):959–69.

    Article  CAS  PubMed  Google Scholar 

  86. Subbiah V, Hu M, Gainor J, Mansfield A, Alonso G, Taylor M, et al. Clinical activity of the RET inhibitor pralsetinib (BLU-667) in patients with RET fusion–positive solid tumors. J Clin Oncol. 2021;39(3_suppl):467–467.

    Article  Google Scholar 

  87. Jonna S, Feldman R, Swensen J, Gatalica Z, Korn W, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25(16):4966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schram A, O’Reilly E, O’Kane G, Goto K, Kim D, Neuzillet C, et al. Efficacy and safety of zenocutuzumab in advanced pancreas cancer and other solid tumors harboring NRG1 fusions. J Clin Oncol. 2021;39(15_suppl):3003–3003.

    Article  Google Scholar 

  89. Armstrong T, Packham G, Murphy L, Bateman A, Conti J, Fine D, et al. Type I Collagen Promotes the Malignant Phenotype of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2004;10(21):7427–37.

    Article  CAS  PubMed  Google Scholar 

  90. Picozzi V, Alseidi A, Winter J, Pishvaian M, Mody K, Glaspy J, et al. Gemcitabine/nab-paclitaxel with pamrevlumab: a novel drug combination and trial design for the treatment of locally advanced pancreatic cancer. ESMO Open. 2020;5(4):e000668.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Feun L, You M, Wu C, Kuo M, Wangpaichitr M, Spector S, et al. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des. 2008;14(11):1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Son J, Lyssiotis C, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bowles T, Kim R, Galante J, Parsons C, Virudachalam S, Kung H, et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 2008;123(8):1950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lowery M, Yu K, Kelsen D, Harding J, Bomalaski J, Glassman D, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer. 2017;123(23):4556–65.

    Article  CAS  PubMed  Google Scholar 

  95. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Can Res. 2007;67(7):3345–55.

    Article  CAS  Google Scholar 

  96. Hammel P, Fabienne P, Mineur L, Metges J, Andre T, De La Fouchardiere C, et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. Eur J Cancer. 2020;124:91–101.

    Article  CAS  PubMed  Google Scholar 

  97. Hammel P, El-Hariry I, Macarulla T, Garcia-Carbonero R, Metges J, Bouché O, et al. Trybeca-1: A randomized, phase 3 study of eryaspase in combination with chemotherapy versus chemotherapy alone as second-line treatment in patients with advanced pancreatic adenocarcinoma (NCT03665441). J Clin Oncol. 2022;40(4_suppl):518–518.

    Article  Google Scholar 

  98. Zachar Z, Marecek J, Maturo C, Gupta S, Stuart S, Howell K, et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med. 2011;89(11):1137–48.

    Article  CAS  PubMed  Google Scholar 

  99. Alistar A, Morris B, Desnoyer R, Klepin H, Hosseinzadeh K, Clark C, et al. Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, open-label, dose-escalation, phase 1 trial. Lancet Oncol. 2017;18(6):770–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rafael Pharmaceuticals I. Rafael Pharmaceuticals Provides Update on Pivotal Phase 3 Clinical Trial in Patients with Metastatic Pancreatic Cancer and Interim Analysis of Pivotal Phase 3 Clinical Trial in Patients with Relapsed or Refractory Acute Myeloid Leukemia [Internet]. GlobeNewswire News Room. 2022 [cited 21 January 2022]. Available from: https://www.globenewswire.com/news-release/2021/10/28/2322715/28235/en/Rafael-Pharmaceuticals-Provides-Update-on-Pivotal-Phase-3-Clinical-Trial-in-Patients-with-Metastatic-Pancreatic-Cancer-and-Interim-Analysis-of-Pivotal-Phase-3-Clinical-Trial-in-Pat.html.

  101. Moffitt R, Marayati R, Flate E, Volmar K, Loeza S, Hoadley K, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Collisson E, Sadanandam A, Olson P, Gibb W, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aung K, Fischer S, Denroche R, Jang G, Dodd A, Creighton S, et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clin Cancer Res. 2017;24(6):1344–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. O’Kane G, Grünwald B, Jang G, Masoomian M, Picardo S, Grant R, et al. GATA6 Expression Distinguishes Classical and Basal-like Subtypes in Advanced Pancreatic Cancer. Clin Cancer Res. 2020;26(18):4901–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen M. O’Reilly MD.

Ethics declarations

Conflict of Interest/Competing Interests

FK: No disclosures.

WP: Research funding to institution: Merck, Astellas, Gossamerbio,

Consulting: Aegle, Onconics.

EMO’R: Research funding to institution: Genentech-Roche, Celgene-BMS, BioNTech, AstraZeneca, Silenseed, Arcus, Elicio, Parker Institute.

Consulting/Advisory/DSMB: Cytomx Therapeutics (DSMB), Cend Therapeutics, Ipsen, Merck, IDEAYA, Noxxon, Rafael Therapeutics (DSMB), Seagen, Boehringer Ingelheim, AstraZeneca, Thetis, Biosapien; Agios (spouse), Genentech-Roche (spouse), Eisai (spouse).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Genetics and GI Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keane, F., Park, W. & O’Reilly, E. Precision Approaches to Pancreatic Cancer Therapy: What Now and What Next?. Curr Treat Options Gastro 20, 406–428 (2022). https://doi.org/10.1007/s11938-022-00386-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-022-00386-x

Keywords

Navigation