Skip to main content

Advertisement

Log in

Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo

  • Oiginal Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We report the analysis of CPI-613, the first member of a large set of analogs of lipoic acid (lipoate) we have investigated as potential anticancer agents. CPI-613 strongly disrupts mitochondrial metabolism, with selectivity for tumor cells in culture. This mitochondrial disruption includes activation of the well-characterized, lipoate-responsive regulatory phosphorylation of the E1α pyruvate dehydrogenase (PDH) subunit. This phosphorylation inactivates flux of glycolysis-derived carbon through this enzyme complex and implicates the PDH regulatory kinases (PDKs) as a possible drug target. Supporting this hypothesis, RNAi knockdown of the PDK protein levels substantially attenuates CPI-613 cancer cell killing. In both cell culture and in vivo tumor environments, the observed strong mitochondrial metabolic disruption is expected to significantly compromise cell survival. Consistent with this prediction, CPI-613 disruption of tumor mitochondrial metabolism is followed by efficient commitment to cell death by multiple, apparently redundant pathways, including apoptosis, in all tested cancer cell lines. Further, CPI-613 shows strong antitumor activity in vivo against human non-small cell lung and pancreatic cancers in xenograft models with low side-effect toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  2. Baggetto LG (1992) Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74:959–974

    Article  PubMed  CAS  Google Scholar 

  3. Christofk HR, Vander Heiden MG, Harris MH, Ramamathan A, Gerszten RE, Wei R, Flemming MD, Schreiber SL, Cantley LD (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–234

    Article  PubMed  CAS  Google Scholar 

  4. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  PubMed  CAS  Google Scholar 

  5. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  PubMed  CAS  Google Scholar 

  6. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  7. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Sem Cancer Biol 19:12–16

    Article  CAS  Google Scholar 

  8. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  9. Garrett R, Grisham CM (2007) Biochemistry. Thomson Brooks, Southbank

    Google Scholar 

  10. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy Series B-Physical and Biological Sciences 84:246–263

    Article  CAS  Google Scholar 

  11. Yeaman SJ (1989) The 2-oxo acid dehydrogenase complexes—Recent advances. Biochem J 257:625–632

    PubMed  CAS  Google Scholar 

  12. Roche TE, Baker JC, Yan YH, Hiromasa R, Gong XM, Peng T, Dong JC, Turhan A, Sa K (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucl Acid Res and Mol Biol 70:33–75

    Article  CAS  Google Scholar 

  13. Bunik VI (2003) 2-oxo acid dehydrogenase complexes in redox regulation: Role of the lipoate residues and thioredoxin. Euro J Biochem 270:1036–1042

    Article  CAS  Google Scholar 

  14. Roche TE, Hiromasa Y, Turkan A, Gong X, Peng T, Yan X, Kasten SA, Bao H, Dong J (2003) Essential roles of lipoyl domains in the activated function and control of pyruvate dehydrogenase kinases and phosphatase isoform 1. Euro J Biochem 270:1050–1056

    Article  CAS  Google Scholar 

  15. Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol 284:E855–E862

    CAS  Google Scholar 

  16. Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849

    Article  PubMed  CAS  Google Scholar 

  17. Koukourakis MI, Giatromanolaki A, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL (2005) Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia 7:1–6

    Article  PubMed  CAS  Google Scholar 

  18. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  Google Scholar 

  19. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  PubMed  CAS  Google Scholar 

  20. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  PubMed  CAS  Google Scholar 

  21. McFate T, Mohyeldin A, Mohyeldin A, Lu H, Thakar J, Henriquez J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoun NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    Article  PubMed  CAS  Google Scholar 

  22. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114

    Article  PubMed  CAS  Google Scholar 

  23. Schafer ZT, Grassian AR, Song LL, Jiang ZY, Gerhart-Hines Z, Irie HY, Gao SZ, Puigserver P, Brugge JS (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–114

    Article  PubMed  CAS  Google Scholar 

  24. Takeda Y, Perez-Pinzon MA, Ginsberg MD, Sick TJ (2004) Mitochondria consume energy and compromise cellular membrane potential by reversing ATP synthetase activity during focal ischemia in rats. J Cereb Blood Flow Metab 24:986–992

    Google Scholar 

  25. de Bruin EC, Mederna JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34:737–749

    Article  PubMed  Google Scholar 

  26. Nagley P, Higgins GC, Higgins GC, Atkin JD, Beart PM (2010) Multifaceted deaths orchestrated by mitochondria in neurons. Biochim Biophys Acta 1802:167–185

    PubMed  CAS  Google Scholar 

  27. Skulachev VP (2004) Wages of Fear: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta 1658:141–147

    Article  PubMed  Google Scholar 

  28. Cuezva JM, Ortega AD, Willers I, Sanchez-Cenizo L, Aldea M, Sanchez-Arago M (2009) The tumor suppressor function of mitochondria: Translation into the clinics. Biochim Biophys Acta 1792:1145–1158

    PubMed  CAS  Google Scholar 

  29. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  PubMed  CAS  Google Scholar 

  30. Bonnet S, Archer SL, Allalunic-Turner J, Harmony A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Mechelas ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  PubMed  CAS  Google Scholar 

  31. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius R, Avis T, Barthrope S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironeneko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Soloman H, Stephens P, Teague J, Tofts C, Varain J, Webb T, West S, Widaa S, Yates A, Reinhoid W, Weinstein JN, Stratton MR, Futreal PA, Wooster R (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5:2606–2612

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigues AR, Rowan A, Smith MEF, Kerr IB, Bodmer WF, Gannon JV, Lane DP (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci, USA 87:7555–7559

    Article  PubMed  CAS  Google Scholar 

  33. Augenlicht LH, Wadler S, Corner G, Richards C, Multani AS, Pathak S, Benson A, Haller D, Heerdt BG (1997) Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: A frequent p53-independent mutation associated with improved outcome in randomized multi-institutional trial. Cancer Res 57:1769–1775

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Gregg Semenza and Bob Weinberg for helpful discussions. We thank colleagues, including Pat Hearing, for help early in this project. This work was largely funded by Cornerstone Pharmaceuticals with early support from the Carol M. Baldwin Breast Cancer Research Fund and Stony Brook Biotechnology Center.

Disclosure

Maturo, Gupta, Howell, Schauble, Lem, Piramzadian, Karnik, and Lee are or were employees of Cornerstone Pharmaceuticals, developers of CPI-613. Zachar, Rodriguez, Shorr, and Bingham have a financial interest in Cornerstone Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Bingham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 186 kb)

(MOV 1641 kb)

(MOV 2437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachar, Z., Marecek, J., Maturo, C. et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med 89, 1137–1148 (2011). https://doi.org/10.1007/s00109-011-0785-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0785-8

Keywords

Navigation