Skip to main content

Advertisement

Log in

Cardiopulmonary Exercise Testing in Athletes: Expect the Unexpected

  • Sports Cardiology (M Wasfy, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Cardiopulmonary exercise testing (CPET) is a tool designed to assess the integrated function of the cardiac, pulmonary, vascular, and musculoskeletal systems to produce an exercise effort. CPET may be performed for performance purposes as part of optimizing a training program or for clinical purposes in athletes with established cardiovascular disease or in those with symptoms suggestive of cardiopulmonary pathology. Most normative values used for CPET parameters have been derived in the general population, in whom there will be expected differences in exercise physiology as compared to a trained athlete. In this review, our goal is to examine current available data on expected findings on CPET in athletes, highlight how these differ from the general population-derived normative values, and identify areas in need of further research to optimize the application of CPET in athletes.

Recent findings

Athletes demonstrate differences in exercise hemodynamic and gas exchange profiles as compared to non-athletes including higher cardiac output, faster heart rate recovery, higher peak V̇O2, higher prevalence of exercise-induced arterial hypoxemia, and lower breathing reserve.

Summary

CPET is an important tool to optimize performance and assess for underlying pathology in an athletic population. The impact of routine, vigorous physical activity on exercise physiology should be integrated into determination of what constitutes a normal CPET result in an athletic individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Society AT. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211.

    Google Scholar 

  2. Hill A, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM Int J Med. 1923;62:135–71.

    Google Scholar 

  3. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7. https://doi.org/10.1152/jappl.1986.60.6.2020.

    Article  CAS  PubMed  Google Scholar 

  4. Levine BD, Baggish AL, Kovacs RJ, Link MS, Maron MS, Mitchell JH. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 1: classification of sports: dynamic, static, and impact. Circulation. 2015;132(22):e262–e6. https://doi.org/10.1161/CIR.0000000000000237.

    Article  PubMed  Google Scholar 

  5. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.

    PubMed  Google Scholar 

  6. Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Hamilton-Wessler M, et al. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol. 1991;17(6):1334–42. https://doi.org/10.1016/s0735-1097(10)80144-5.

    Article  CAS  PubMed  Google Scholar 

  7. Bruce R. Exercising testing in adult normal subjects and cardiac patients. Pediatrics. 1963;32:742.

    Google Scholar 

  8. Åstrand P-O, Saltin B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol. 1961;16(6):971–6.

    PubMed  Google Scholar 

  9. Balke B, Ware RW. An experimental study of physical fitness of Air Force personnel. U S Armed Forces Med J. 1959;10(6):675–88.

    CAS  PubMed  Google Scholar 

  10. Ellestad MH, Allen W, Wan MC, Kemp GL. Maximal treadmill stress testing for cardiovascular evaluation. Circulation. 1969;39(4):517–22.

    CAS  PubMed  Google Scholar 

  11. Saltin B, Astrand P-O. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23(3):353–8.

    CAS  PubMed  Google Scholar 

  12. Churchill TW, Disanto M, Singh TK, Groezinger E, Loomer G, Contursi M, et al. Diagnostic yield of customized exercise provocation following routine testing. Am J Cardiol. 2019;123(12):2044–50.

    PubMed  Google Scholar 

  13. Paap D, Takken T. Reference values for cardiopulmonary exercise testing in healthy adults: a systematic review. Expert Rev Cardiovasc Ther. 2014;12(12):1439–53.

    CAS  PubMed  Google Scholar 

  14. • Takken T, Mylius C, Paap D, Broeders W, Hulzebos H, Van Brussel M, et al. Reference values for cardiopulmonary exercise testing in healthy subjects–an updated systematic review. Expert Rev Cardiovasc Ther. 2019;17(6):413–26. This systematic review provides a comprehensive evaluation of reference standards for cardiopulmonary exercise testing parameters in healthy subjects.

  15. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8.

    CAS  PubMed  Google Scholar 

  16. Wasserman K, Hansen J, Sue D, Stringer W, Whipp B. Principles of exercise testing and interpretation. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  17. Fitzgerald MD, Tanaka H, Tran ZV, Seals DR. Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis. J Appl Physiol. 1997;83(1):160–5.

    CAS  PubMed  Google Scholar 

  18. Malek MH, Berger DE, Housh TJ, Coburn JW, Beck TW. Validity of VO2max equations for aerobically trained males and females. Med Sci Sports Exerc. 2004;36(8):1427–32.

    PubMed  Google Scholar 

  19. Wilson TM, Tanaka H. Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. Am J Phys Heart Circ Phys. 2000;278(3):H829–H34.

    CAS  Google Scholar 

  20. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261–74. https://doi.org/10.1161/CIR.0b013e31826fb946.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fox SM, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32.

    PubMed  Google Scholar 

  22. Andersen KL, Shephard R, Denolin H, Varnauskas E, Masironi R, Organization WH. Fundamentals of exercise testing. 1971.

  23. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6. https://doi.org/10.1016/S0735-1097(00)01054-8.

    Article  CAS  PubMed  Google Scholar 

  24. Faff J, Sitkowski D, Ladyga M, Klusiewicz A, Borkowski L, Starczewska-Czapowska J. Maximal heart rate in athletes. Biol Sport. 2007;24(2):129.

    Google Scholar 

  25. Nikolaidis PT. Maximal heart rate in soccer players: measured versus age-predicted. Biomed J. 2015;38(1):84–9.

    PubMed  Google Scholar 

  26. Nikolaidis PT, Rosemann T, Knechtle B. Age-predicted maximal heart rate in recreational marathon runners: a cross-sectional study on Fox’s and Tanaka’s equations. Front Physiol. 2018;9(226). https://doi.org/10.3389/fphys.2018.00226.

  27. Prieur F, Benoit H, Busso T, Castells J, Denis C. Effect of endurance training on the VO2-work rate relationship in normoxia and hypoxia. Med Sci Sports Exerc. 2005;37(4):664–9.

    PubMed  Google Scholar 

  28. Pierpont GL, Adabag S, Yannopoulos D. Pathophysiology of exercise heart rate recovery: a comprehensive analysis. Ann Noninvasive Electrocardiol. 2013;18(2):107–17.

    PubMed  PubMed Central  Google Scholar 

  29. Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24(6):1529–35. https://doi.org/10.1016/0735-1097(94)90150-3.

    Article  CAS  PubMed  Google Scholar 

  30. Lauer M, Froelicher ES, Williams M, Kligfield P. Exercise testing in asymptomatic adults: a statement for professionals from the American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2005;112(5):771–6.

    PubMed  Google Scholar 

  31. Aktas MK, Ozduran V, Pothier CE, Lang R, Lauer MS. Global risk scores and exercise testing for predicting all-cause mortality in a preventive medicine program. JAMA. 2004;292(12):1462–8. https://doi.org/10.1001/jama.292.12.1462.

    Article  CAS  PubMed  Google Scholar 

  32. Dixon EM, Kamath MV, McCartney N, Fallen EL. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res. 1992;26(7):713–9.

    CAS  PubMed  Google Scholar 

  33. Du N, Bai S, Oguri K, Kato Y, Matsumoto I, Kawase H, et al. Heart rate recovery after exercise and neural regulation of heart rate variability in 30–40 year old female marathon runners. J Sports Sci Med. 2005;4(1):9.

    PubMed  PubMed Central  Google Scholar 

  34. Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol. 1997;83(1):153–9.

    CAS  PubMed  Google Scholar 

  35. Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc. 2001;33(9):1496–502.

    CAS  PubMed  Google Scholar 

  36. Sugawara J, Murakami H, Maeda S, Kuno S, Matsuda M. Change in post-exercise vagal reactivation with exercise training and detraining in young men. Eur J Appl Physiol. 2001;85(3–4):259–63.

    CAS  PubMed  Google Scholar 

  37. Heffernan KS, Fahs CA, Shinsako KK, Jae SY, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Phys Heart Circ Phys. 2007;293(5):H3180–H6.

    CAS  Google Scholar 

  38. Borresen J, Lambert MI. Autonomic control of heart rate during and after exercise. Sports Med. 2008;38(8):633–46.

    PubMed  Google Scholar 

  39. Daanen HA, Lamberts RP, Kallen VL, Jin A, Van Meeteren NL. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int J Sports Physiol Perform. 2012;7(3):251–60.

    PubMed  Google Scholar 

  40. Holmqvist L, Mortensen L, Kanckos C, Ljungman C, Mehlig K, Manhem K. Exercise blood pressure and the risk of future hypertension. J Hum Hypertens. 2012;26(12):691–5.

    CAS  PubMed  Google Scholar 

  41. Lewis GD, Gona P, Larson MG, Plehn JF, Benjamin EJ, O’Donnell CJ, et al. Exercise blood pressure and the risk of incident cardiovascular disease (from the Framingham Heart Study). Am J Cardiol. 2008;101(11):1614–20. https://doi.org/10.1016/j.amjcard.2008.01.046.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Whelton PK, Carey RM, Aronow W, Casey D Jr, Collins K, Dennison Himmelfarb C, et al. Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;71(6):1269–324.

    Google Scholar 

  43. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021–104.

    PubMed  Google Scholar 

  44. Le V-V, Mitiku T, Sungar G, Myers J, Froelicher V. The blood pressure response to dynamic exercise testing: a systematic review. Prog Cardiovasc Dis. 2008;51(2):135–60.

    PubMed  Google Scholar 

  45. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.

    CAS  PubMed  Google Scholar 

  46. Pressler A, Jaehnig A, Halle M, Haller B. Blood pressure response to maximal dynamic exercise testing in an athletic population. J Hypertens. 2018;36(9):1803–9.

    CAS  PubMed  Google Scholar 

  47. Caselli S, Segui AV, Quattrini F, Di Gacinto B, Milan A, Assorgi R, et al. Upper normal values of blood pressure response to exercise in Olympic athletes. Am Heart J. 2016;177:120–8.

    PubMed  Google Scholar 

  48. • Caselli S, Serdoz A, Mango F, Lemme E, Vaquer Seguì A, Milan A, et al. High blood pressure response to exercise predicts future development of hypertension in young athletes. Eur Heart J. 2018;40(1):62–8. https://doi.org/10.1093/eurheartj/ehy810. This important paper showed that athletes exceeding SBP of 220 mmHg in males and 200 mmHg in females had a 3.6 fold higher risk of incident HTN over 6.5 years of follow up.

  49. Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999;87(6):1997–2006.

    CAS  PubMed  Google Scholar 

  50. Nielsen HB. Arterial desaturation during exercise in man: implication for O2 uptake and work capacity. Scand J Med Sci Sports. 2003;13(6):339–58.

    PubMed  Google Scholar 

  51. Powers SK, Martin D, Dodd S. Exercise-induced hypoxaemia in elite endurance athletes. Sports Med. 1993;16(1):14–22.

    CAS  PubMed  Google Scholar 

  52. Prefaut C, Durand F, Mucci P, Caillaud C. Exercise-induced arterial hypoxaemia in athletes. Sports Med. 2000;30(1):47–61.

    CAS  PubMed  Google Scholar 

  53. Durand F, Gaston A-F, Vicenzi M, Deboeck G, Subirats E, Faoro V. Noninvasive pulmonary hemodynamic evaluation in athletes with exercise-induced hypoxemia. Chest. 2020.

  54. Connes P, Bouix D, Durand F, Kippelen P, Mercier J, Prefaut C, et al. Is hemoglobin desaturation related to blood viscosity in athletes during exercise? Int J Sports Med. 2004;25(08):569–74.

    CAS  PubMed  Google Scholar 

  55. Constantini K, Tanner DA, Gavin TP, Harms CA, Stager JM, Chapman RF. Prevalence of exercise-induced arterial hypoxemia in distance runners at sea level. Med Sci Sports Exerc. 2017;49(5):948–54.

    PubMed  Google Scholar 

  56. Préfaut C, Anselme F, Caillaud C, Masse-Biron J. Exercise-induced hypoxemia in older athletes. J Appl Physiol. 1994;76(1):120–6.

    PubMed  Google Scholar 

  57. Rice AJ, Scroop GC, Gore CJ, Thornton AT, Chapman MA, Greville HW, et al. Exercise-induced hypoxaemia in highly trained cyclists at 40% peak oxygen uptake. Eur J Appl Physiol Occup Physiol. 1999;79(4):353–9. https://doi.org/10.1007/s004210050520.

    Article  CAS  PubMed  Google Scholar 

  58. Levine BD. VO2max: what do we know, and what do we still need to know? J Physiol. 2008;586(1):25–34.

    CAS  PubMed  Google Scholar 

  59. Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70.

    PubMed  Google Scholar 

  60. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–82.

    PubMed  Google Scholar 

  61. Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218–28.

    CAS  Google Scholar 

  62. Brown SJ, Ryan HJ, Brown JA. Age-associated changes in VO2 and power output-a cross-sectional study of endurance trained New Zealand cyclists. J Sports Sci Med. 2007;6(4):477.

    PubMed  PubMed Central  Google Scholar 

  63. Storer TW, Davis JA, Caiozzo VJ. Accurate prediction of VO2max in cycle ergometry. Med Sci Sports Exerc. 1990;22(5):704–12.

    CAS  PubMed  Google Scholar 

  64. Stringer WW, Hansen JE, Wasserman K. Cardiac output estimated noninvasively from oxygen uptake during exercise. J Appl Physiol (1985). 1997;82(3):908–12. https://doi.org/10.1152/jappl.1997.82.3.908.

    Article  CAS  Google Scholar 

  65. Bhambhani Y, Norris S, Bell G. Prediction of stroke volume from oxygen pulse measurements in untrained and trained men. Can J Appl Physiol. 1994;19(1):49–59.

    CAS  PubMed  Google Scholar 

  66. Crisafulli A, Piras F, Chiappori P, Vitelli S, Caria MA, Lobina A, et al. Estimating stroke volume from oxygen pulse during exercise. Physiol Meas. 2007;28(10):1201.

    PubMed  Google Scholar 

  67. Accalai E, Vignati C, Salvioni E, Pezzuto B, Contini M, Cadeddu C, et al. Non-invasive estimation of stroke volume during exercise from oxygen in heart failure patients. Eur J Prev Cardiol. 2020. https://doi.org/10.1177/2047487320920755.

  68. Vella CA, Robergs RA. A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med. 2005;39(4):190–5. https://doi.org/10.1136/bjsm.2004.013037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sarma S, Carrick-Ranson G, Bhella P, Hastings J, Boyd K, Palmer D, et al. Changes in oxygen pulse during exercise do not reliably track changes in stroke volume within individuals. J Am Coll Cardiol. 2014;63(12 Supplement):A1654. https://doi.org/10.1016/s0735-1097(14)61657-0.

    Article  Google Scholar 

  70. Belardinelli R, Lacalaprice F, Carle F, Minnucci A, Cianci G, Perna G, et al. Exercise-induced myocardial ischaemia detected by cardiopulmonary exercise testing. Eur Heart J. 2003;24(14):1304–13. https://doi.org/10.1016/S0195-668X(03)00210-0.

    Article  PubMed  Google Scholar 

  71. Belardinelli R, Lacalaprice F, Tiano L, Muçai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. Int J Cardiol. 2014;174(2):337–42.

    PubMed  Google Scholar 

  72. Castello-Simões V, Minatel V, Karsten M, Simões RP, Perseguini NM, Milan JC et al. Circulatory and ventilatory power: characterization in patients with coronary artery disease. Arq Bras Cardiol. 2015;(AHEAD).

  73. De Lorenzo A, da Silva CL, Souza FCC, Serra S, Marino P, Lima SLR. Clinical, scintigraphic, and angiographic predictors of oxygen pulse abnormality in patients undergoing cardiopulmonary exercise testing. Clin Cardiol. 2017;40(10):914–8. https://doi.org/10.1002/clc.22747.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Klainman E, Fink G, Lebzelter J, Krelbaumm T, Kramer MR. The relationship between left ventricular function assessed by multigated radionuclide test and cardiopulmonary exercise test in patients with ischemic heart disease. Chest. 2002;121(3):841–5. https://doi.org/10.1378/chest.121.3.841.

    Article  PubMed  Google Scholar 

  75. Klainman E, Kusniec J, Stern J, Fink G, Farbstein H. Contribution of cardiopulmonary indices in the assessment of patients with silent and symptomatic ischemia during exercise testing. Int J Cardiol. 1996;53(3):257–63. https://doi.org/10.1016/0167-5273(95)02551-0.

    Article  CAS  PubMed  Google Scholar 

  76. Laukkanen JA, Kurl S, Salonen JT, Lakka TA. Peak oxygen pulse during exercise as a predictor for coronary heart disease and all cause death. Heart. 2006;92(9):1219–24. https://doi.org/10.1136/hrt.2005.077487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Munhoz EC, Hollanda R, Vargas JP, Silveira CW, Lemos AL, Hollanda RM, et al. Flattening of oxygen pulse during exercise may detect extensive myocardial ischemia. Med Sci Sports Exerc. 2007;39(8):1221–6.

    PubMed  Google Scholar 

  78. De Lorenzo A, Da Silva C, Souza FC, Lima RDSL. Value of the oxygen pulse curve for the diagnosis of coronary artery disease. Physiol Res. 2018;67(5):679–86.

    PubMed  Google Scholar 

  79. Spirito P, Maron BJ, Bonow RO, Epstein SE. Prevalence and significance of an abnormal ST segment response to exercise in a young athletic population. Am J Cardiol. 1983;51(10):1663–6.

    CAS  PubMed  Google Scholar 

  80. Van de Sande D, Hoogeveen A, Hoogsteen J, Kemps H. The diagnostic accuracy of exercise electrocardiography in asymptomatic recreational and competitive athletes. Scand J Med Sci Sports. 2016;26(2):214–20.

    PubMed  Google Scholar 

  81. van de Sande DA, Breuer MA, Kemps HM. Utility of exercise electrocardiography in pre-participation screening in asymptomatic athletes: a systematic review. Sports Med. 2016;46(8):1155–64.

    PubMed  Google Scholar 

  82. van de Sande DA, Liem IH, Hoogsteen J, Kemps HM. The diagnostic accuracy of myocardial perfusion scintigraphy in athletes with abnormal exercise test results. Eur J Prev Cardiol. 2017;24(9):1000–7.

    PubMed  Google Scholar 

  83. Lucia A, Rabadan M, Hoyos J, Hernandez-Capilla M, Perez M, San Juan AF, et al. Frequency of the VO2max plateau phenomenon in world-class cyclists. Int J Sports Med. 2006;27(12):984–92. https://doi.org/10.1055/s-2006-923,833.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou B, Conlee RK, Jensen R, Fellingham GW, George JD, Fisher AG. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc. 2001;33(11):1849–54. https://doi.org/10.1097/00005768-200,111,000-00008.

    Article  CAS  PubMed  Google Scholar 

  85. McKenzie DC. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46(6):381–4. https://doi.org/10.1136/bjsports-2011-090824.

    Article  PubMed  Google Scholar 

  86. Sales ATN, Fregonezi GAF, Ramsook AH, Guenette JA, Lima INDF, Reid WD. Respiratory muscle endurance after training in athletes and non-athletes: a systematic review and meta-analysis. Phys Ther Sport. 2016;17:76–86. https://doi.org/10.1016/j.ptsp.2015.08.001.

    Article  PubMed  Google Scholar 

  87. Cordain L, Stager J. Pulmonary structure and function in swimmers. Sports Med. 1988;6(5):271–8. https://doi.org/10.2165/00007256-198,806,050-00002.

    Article  CAS  PubMed  Google Scholar 

  88. Amann M. Pulmonary system limitations to endurance exercise performance in humans. Exp Physiol. 2012;97(3):311–8.

    PubMed  Google Scholar 

  89. Dempsey J, Amann M, Harms C, Wetter T. Respiratory system limitations to performance in the healthy athlete: some answers, more questions! Deutsche Zeitschrift fur Sportmedizin. 2012;63(6):157–62.

    Google Scholar 

  90. Dempsey JA. Respiratory determinants of exercise limitation: focus on phrenic afferents and the lung vasculature. Clin Chest Med. 2019;40(2):331–42.

    PubMed  PubMed Central  Google Scholar 

  91. Wells GD, Norris SR. Assessment of physiological capacities of elite athletes & respiratory limitations to exercise performance. Pediatr Respir Rev. 2009;10(3):91–8.

    Google Scholar 

  92. Lewis GD, Shah RV, Pappagianopolas PP, Systrom DM, Semigran MJ. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone. Circ Heart Fail. 2008;1(4):227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Arena R, Myers J, Guazzi M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev. 2008;13(2):245–69.

    PubMed  Google Scholar 

  94. Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation. 2002;106(24):3079–84.

    PubMed  Google Scholar 

  95. Kleber F, Vietzke G, Wernecke K-D, Bauer U, Opitz C, Wensel R, et al. Impairment of ventilatory efficiency in heart failure: prognostic impact. Circulation. 2000;101(24):2803–9.

    CAS  PubMed  Google Scholar 

  96. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, et al. Development of a ventilatory classification system in patients with heart failure. Circulation. 2007;115(18):2410–7.

    PubMed  Google Scholar 

  97. Malhotra R, Bakken K, D’Elia E, Lewis GD. Cardiopulmonary exercise testing in heart failure. JACC Heart Fail. 2016;4(8):607–16.

    PubMed  Google Scholar 

  98. Sun X-G, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):1443–8. https://doi.org/10.1164/rccm.2202033.

    Article  PubMed  Google Scholar 

  99. Nayor M, Xanthakis V, Tanguay M, Blodgett JB, Shah RV, Schoenike M, et al. Clinical and hemodynamic associations and prognostic implications of ventilatory efficiency in patients with preserved left ventricular systolic function. Circ Heart Fail. 2020;13(5):e006729. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006729.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brown SJ, Raman A, Schlader Z, Stannard SR. Ventilatory efficiency in juvenile elite cyclists. J Sci Med Sport. 2013;16(3):266–70.

    PubMed  Google Scholar 

  101. Salazar-Martínez E, de Matos TR, Arrans P, Santalla A, Orellana JN. Ventilatory efficiency response is unaffected by fitness level, ergometer type, age or body mass index in male athletes. Biol Sport. 2018;35(4):393.

    PubMed  PubMed Central  Google Scholar 

  102. Salazar-Martínez E, Santalla A, Orellana JN, Strobl J, Burtscher M, Menz V. Influence of high-intensity interval training on ventilatory efficiency in trained athletes. Respir Physiol Neurobiol. 2018;250:19–23.

    PubMed  Google Scholar 

  103. Salazar-Martínez E, Terrados N, Burtscher M, Santalla A, Orellana JN. Ventilatory efficiency and breathing pattern in world-class cyclists: a three-year observational study. Respir Physiol Neurobiol. 2016;229:17–23.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan M. Wasfy MD, MPH.

Ethics declarations

Conflict of Interest

Bradley J. Petek, Sarah K. Gustus, and Meagan M. Wasfy declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petek, B.J., Gustus, S.K. & Wasfy, M.M. Cardiopulmonary Exercise Testing in Athletes: Expect the Unexpected. Curr Treat Options Cardio Med 23, 49 (2021). https://doi.org/10.1007/s11936-021-00928-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-021-00928-z

Keywords

Navigation