Skip to main content

Advertisement

Log in

Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J Clin Pathol. 2009;62(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  2. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.

    Article  PubMed  Google Scholar 

  3. Mestroni L, Maisch B, McKenna WJ, et al. Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J. 1999;20(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  4. Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2011;57(16):1641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hershberger RE, Morales A, editors. LMNA-related dilated cardiomyopathy. Seattle: University of Washington; 2008.

    Google Scholar 

  6. Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008;52(15):1250–60.

    Article  PubMed  Google Scholar 

  7. Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41(5):771–80.

    Article  CAS  PubMed  Google Scholar 

  8. Parks SB, Kushner JD, Nauman D, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156(1):161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715–24.

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Serra A, Toro R, Campuzano O, et al. A novel mutation in lamin A/C causing familial dilated cardiomyopathy associated with sudden cardiac death. J Card Fail. 2015;21(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  11. van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl). 2005;83(1):79–83.

    Article  CAS  Google Scholar 

  12. • Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol. 2002;39(6):981–90. Important case series of LMNA cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  13. Becane HM, Bonne G, Varnous S, et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol. 2000;23(11 Pt 1):1661–6.

    Article  CAS  PubMed  Google Scholar 

  14. Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest. 2009;119(7):1825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaremba-Czogalla M, Dubinska-Magiera M, Rzepecki R. Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett. 2011;16(1):114–48.

    Article  CAS  PubMed  Google Scholar 

  16. Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell. 2013;152(6):1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mounkes L, Kozlov S, Burke B, Stewart CL. The laminopathies: nuclear structure meets disease. Curr Opin Genet Dev. 2003;13(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  18. Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–64.

    Article  CAS  PubMed  Google Scholar 

  19. Szeverenyi I, Cassidy AJ, Chung CW, et al. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum Mutat. 2008;29(3):351–60.

    Article  CAS  PubMed  Google Scholar 

  20. Ho CY, Lammerding J. Lamins at a glance. J Cell Sci. 2012;125(Pt 9):2087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin F, Worman HJ. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem. 1993;268(22):16321–6.

    CAS  PubMed  Google Scholar 

  22. Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol. 2013;14(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  23. Mestroni L, Taylor MR. Lamin A/C gene and the heart: how genetics may impact clinical care. J Am Coll Cardiol. 2008;52(15):1261–2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sieprath T, Darwiche R, De Vos WH. Lamins as mediators of oxidative stress. Biochem Biophys Res Commun. 2012;421(4):635–9.

    Article  CAS  PubMed  Google Scholar 

  25. Machiels BM, Zorenc AH, Endert JM, et al. An alternative splicing product of the lamin A/C gene lacks exon 10. J Biol Chem. 1996;271(16):9249–53.

    Article  CAS  PubMed  Google Scholar 

  26. Hoger TH, Krohne G, Franke WW. Amino acid sequence and molecular characterization of murine lamin B as deduced from cDNA clones. Eur J Cell Biol. 1988;47(2):283–90.

    CAS  PubMed  Google Scholar 

  27. Fisher DZ, Chaudhary N, Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A. 1986;83(17):6450–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Worman HJ, Bonne G. “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res. 2007;313(10):2121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mounkes LC, Burke B, Stewart CL. The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med. 2001;11(7):280–5.

    Article  CAS  PubMed  Google Scholar 

  30. Snider NT, Omary MB. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol. 2014;15(3):163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22(7):832–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rankin J, Ellard S. The laminopathies: a clinical review. Clin Genet. 2006;70(4):261–74.

    Article  CAS  PubMed  Google Scholar 

  33. Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12(5):222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Young SG, Fong LG, Michaelis S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J Lipid Res. 2005;46(12):2531–58.

    Article  CAS  PubMed  Google Scholar 

  35. Wright LP, Philips MR. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res. 2006;47(5):883–91.

    Article  CAS  PubMed  Google Scholar 

  36. Davies BS, Fong LG, Yang SH, Coffinier C, Young SG. The posttranslational processing of prelamin A and disease. Annu Rev Genomics Hum Genet. 2009;10:153–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barrowman J, Michaelis S. ZMPSTE24, an integral membrane zinc metalloprotease with a connection to progeroid disorders. Biol Chem. 2009;390(8):761–73.

    Article  CAS  PubMed  Google Scholar 

  38. Bergo MO, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A. 2002;99(20):13049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pendas AM, Zhou Z, Cadinanos J, et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002;31(1):94–9.

    CAS  PubMed  Google Scholar 

  40. Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R. Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci. 2008;121(Pt 2):215–25.

    Article  CAS  PubMed  Google Scholar 

  41. Beck LA, Hosick TJ, Sinensky M. Isoprenylation is required for the processing of the lamin A precursor. J Cell Biol. 1990;110(5):1489–99.

    Article  CAS  PubMed  Google Scholar 

  42. Weber K, Plessmann U, Traub P. Maturation of nuclear lamin A involves a specific carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Lett. 1989;257(2):411–4.

    Article  CAS  PubMed  Google Scholar 

  43. Barrowman J, Hamblet C, Kane MS, Michaelis S. Requirements for efficient proteolytic cleavage of prelamin A by ZMPSTE24. PLoS One. 2012;7:e32120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tam A, Schmidt WK, Michaelis S. The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor. J Biol Chem. 2001;276(50):46798–806.

    Article  CAS  PubMed  Google Scholar 

  45. Barrowman J, Hamblet C, George CM, Michaelis S. Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment. Mol Biol Cell. 2008;19:5398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci U S A. 1998;95:11175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hutchison CJ. The role of DNA damage in laminopathy progeroid syndromes. Biochem Soc Trans. 2011;39(6):1715–8.

    Article  CAS  PubMed  Google Scholar 

  48. Navarro CL, De Sandre-Giovannoli A, Bernard R, et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet. 2004;13(20):2493–503.

    Article  CAS  PubMed  Google Scholar 

  49. De Sandre-Giovannoli A, Levy N. Altered splicing in prelamin A-associated premature aging phenotypes. Prog Mol Subcell Biol. 2006;44:199–232.

    Article  CAS  PubMed  Google Scholar 

  50. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21(3):285–8.

    Article  CAS  PubMed  Google Scholar 

  51. Bonne G, Letcurcq F, Ben Yaou R. Emery-Dreifuss muscular dystrophy. In: GeneReviews. University of Washington, Seattle; 2004.

  52. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  53. Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ. Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev. 2006;86(3):967–1008.

    Article  CAS  PubMed  Google Scholar 

  54. Hegele RA, Cao H, Liu DM, et al. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet. 2006;79(2):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Padiath QS, Saigoh K, Schiffmann R, et al. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet. 2006;38(10):1114–23.

    Article  CAS  PubMed  Google Scholar 

  56. Brown CA, Lanning RW, McKinney KQ, et al. Novel and recurrent mutations in lamin A/C in patients with Emery-Dreifuss muscular dystrophy. Am J Med Genet. 2001;102(4):359–67.

    Article  CAS  PubMed  Google Scholar 

  57. Shackleton S, Lloyd DJ, Jackson SN, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24:153–6.

    Article  CAS  PubMed  Google Scholar 

  58. Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423:293–8.

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999;147(5):913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Andres V, Gonzalez JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol. 2009;187(7):945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest. 2004;113:370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gonzalez-Suarez I, Redwood AB, Perkins SM, et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 2009;28(16):2414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dechat T, Shimi T, Adam SA, et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci U S A. 2007;104:4955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dauer WT, Worman HJ. The nuclear envelope as a signaling node in development and disease. Dev Cell. 2009;17:626–38.

    Article  CAS  PubMed  Google Scholar 

  65. Röber RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development. 1989;105:365–78.

    PubMed  Google Scholar 

  66. Stewart C, Burke B. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell. 1987;51:383–92.

    Article  CAS  PubMed  Google Scholar 

  67. Muchir A, Bonne G, van der Kooi AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet. 2000;9:1453–9.

    Article  CAS  PubMed  Google Scholar 

  68. De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300(5628):2055.

    Article  CAS  PubMed  Google Scholar 

  69. De Sandre-Giovannoli A, Chaouch M, Kozlov S, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet. 2002;70(3):726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zwerger M, Jaalouk DE, Lombardi ML, et al. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet. 2013;22:2335–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moriuchi T, Muraoka T, Mio K, Osumi T, Hirose F. Long-term expression of the lamin A mutant associated with dilated cardiomyopathy induces senescence. Genes Cells. 2014;19(12):901–18.

    Article  CAS  PubMed  Google Scholar 

  72. Moir RD, Yoon M, Khuon S, Goldman RD. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol. 2000;151(6):1155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Panorchan P, Schafer BW, Wirtz D, Tseng Y. Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J Biol Chem. 2004;279(42):43462–7.

    Article  CAS  PubMed  Google Scholar 

  74. Broers JL, Peeters EA, Kuijpers HJ, et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet. 2004;13:2567–80.

    Article  CAS  PubMed  Google Scholar 

  75. Newport JW, Wilson KL, Dunphy WG. A lamin-independent pathway for nuclear envelope assembly. J Cell Biol. 1990;111:2247–59.

    Article  CAS  PubMed  Google Scholar 

  76. Taranum S, Vaylann E, Meinke P, et al. LINC complex alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol. 2012;91:614–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fawcett DW. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am J Anat. 1966;119:129–45.

    Article  CAS  PubMed  Google Scholar 

  78. Belmont AS, Zhai Y, Thilenius A. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J Cell Biol. 1993;123:1671–85.

    Article  CAS  PubMed  Google Scholar 

  79. Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest. 2004;113(3):357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Galiová G, Bártová E, Raska I, Krejcí J, Kozubek S. Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. Eur J Cell Biol. 2008;87:291–303.

    Article  PubMed  CAS  Google Scholar 

  81. Ognibene A, Sabatelli P, Petrini S, et al. Nuclear changes in a case of X-linked Emery-Dreifuss muscular dystrophy. Muscle Nerve. 1999;22:864–9.

    Article  CAS  PubMed  Google Scholar 

  82. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med. 2005;11:440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bruston F, Delbarre E, Ostlund C, Worman HJ, Buendia B, Duband-Goulet I. Loss of a DNA binding site within the tail of prelamin A contributes to altered heterochromatin anchorage by progerin. FEBS Lett. 2010;584:2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taniura H, Glass C, Gerace L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J Cell Biol. 1995;131:33–44.

    Article  CAS  PubMed  Google Scholar 

  86. Shoeman RL, Traub P. The in vitro DNA-binding properties of purified nuclear lamin proteins and vimentin. J Biol Chem. 1990;265:9055–61.

    CAS  PubMed  Google Scholar 

  87. Ludérus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol. 1994;14:6297–305.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008;453:948–51.

    Article  CAS  PubMed  Google Scholar 

  89. Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med. 2005;11(7):780–5.

    Article  CAS  PubMed  Google Scholar 

  90. Manju K, Muralikrishna B, Parnaik VK. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J Cell Sci. 2006;119:2704–14.

    Article  CAS  PubMed  Google Scholar 

  91. Gnocchi VF, Ellis JA, Zammit PS. Does satellite cell dysfunction contribute to disease progression in Emery-Dreifuss muscular dystrophy? Biochem Soc Trans. 2008;36:1344–9.

    Article  CAS  PubMed  Google Scholar 

  92. Reddy KL, Zullo JM, Bertolino E, Singh H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature. 2008;452:243–7.

    Article  CAS  PubMed  Google Scholar 

  93. Malhas AN, Lee CF, Vaux DJ. Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol. 2009;184:45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Spann TP, Goldman AE, Wang C, Huang S, Goldman RD. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol. 2002;156:603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kumaran RI, Muralikrishna B, Parnaik VK. Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J Cell Biol. 2002;159:783–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol. 2008;183:653–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shumaker DK, Kuczmarski ER, Goldman RD. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curr Opin Cell Biol. 2003;15:358–66.

    Article  CAS  PubMed  Google Scholar 

  99. Stierlé V, Couprie J, Ostlund C, et al. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry. 2003;42:4819–28.

    Article  PubMed  CAS  Google Scholar 

  100. Tzur YB, Wilson KL, Gruenbaum Y. SUN-domain proteins: ‘Velcro’ that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol. 2006;7:782–8.

    Article  CAS  PubMed  Google Scholar 

  101. Hodzic DM, Yeater DB, Bengtsson L, Otto H, Stahl PD. Sun2 is a novel mammalian inner nuclear membrane protein. J Biol Chem. 2004;279:25805–12.

    Article  CAS  PubMed  Google Scholar 

  102. Malone CJ, Fixsen WD, Horvitz HR, Han M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development. 1999;126:3171–81.

    CAS  PubMed  Google Scholar 

  103. Starr DA, Han M. ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci. 2003;116:211–6.

    Article  CAS  PubMed  Google Scholar 

  104. Haque F, Mazzeo D, Patel JT, et al. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem. 2010;285(5):3487–98.

    Article  CAS  PubMed  Google Scholar 

  105. Meinke P, Nguyen TD, Wehnert MS. The LINC complex and human disease. Biochem Soc Trans. 2011;39(6):1693–7.

    Article  CAS  PubMed  Google Scholar 

  106. Chen CY, Chi YH, Mutalif RA, et al. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell. 2012;149:565–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khatau SB, Kusuma S, Hanjaya-Putra D, et al. The differential formation of the LINC-mediated perinuclear actin cap in pluripotent and somatic cells. PLoS One. 2012;7:e36689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gundersen GG, Worman HJ. Nuclear positioning. Cell. 2013;152:1376–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Méjat A, Misteli T. LINC complexes in health and disease. Nucleus. 2010;1:40–52.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Folker ES, Ostlund C, Luxton GW, Worman HJ, Gundersen GG. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci U S A. 2011;108:131–6.

    Article  CAS  PubMed  Google Scholar 

  111. Luxton GW, Gomes ER, Folker ES, Vintinner E, Gundersen GG. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 2010;329:956–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luxton GW, Gomes ER, Folker ES, Worman HJ, Gundersen GG. TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus. 2011;2:173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Isermann P, Lammerding J. Nuclear mechanics and mechanotransduction in health and disease. Curr Biol. 2013;23(24):R1113–21.

    Article  CAS  PubMed  Google Scholar 

  114. Kubben N, Voncken JW, Misteli T. Mapping of protein- and chromatin-interactions at the nuclear lamina. Nucleus. 2010;1:460–71.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Prasad TS, Kandasamy K, Pandey A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol. 2009;577:67–79.

    Article  CAS  PubMed  Google Scholar 

  116. Kavanagh DM, Powell WE, Malik P, Lazou V, Schirmer EC. Organelle proteome variation among different cell types: lessons from nuclear membrane proteins. Subcell Biochem. 2007;43:51–76.

    Article  PubMed  Google Scholar 

  117. Muchir A, Pavlidis P, Bonne G, Hayashi YK, Worman HJ. Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy. Hum Mol Genet. 2007;16:1884–95.

    Article  CAS  PubMed  Google Scholar 

  118. Muchir A, Pavlidis P, Decostre V, et al. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest. 2007;117:1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bakay M, Wang Z, Melcon G, et al. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain. 2006;129(Pt 4):996–1013.

    Article  PubMed  Google Scholar 

  120. Mejat A, Decostre V, Li J, et al. Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J Cell Biol. 2009;184(1):31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dialynas G, Flannery KM, Zirbel LN, et al. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet. 2012;21(7):1544–56.

    Article  CAS  PubMed  Google Scholar 

  122. Lin F, Morrison JM, Wu W, Worman HJ. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet. 2005;14(3):437–45.

    Article  CAS  PubMed  Google Scholar 

  123. Van Berlo JH, Voncken JW, Kubben N, et al. A-type lamins are essential for TGF-beta1 induced PP2A to dephosphorylate transcription factors. Hum Mol Genet. 2005;14(19):2839–49.

    Article  CAS  PubMed  Google Scholar 

  124. van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers a European cohort study. J Am Coll Cardiol. 2012;59(5):493–500.

    Article  PubMed  CAS  Google Scholar 

  125. van Rijsingen IA, Nannenberg EA, Arbustini E, et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail. 2013;15(4):376–84.

    Article  PubMed  CAS  Google Scholar 

  126. Sylvius N, Tesson F. Lamin A/C and cardiac diseases. Curr Opin Cardiol. 2006;21(3):159–65.

    Article  PubMed  Google Scholar 

  127. van Berlo JH. When lamin A/C fails, the heart suffers. Neth Hear J. 2006;14(10):354.

    Google Scholar 

  128. Larsen MK, Nissen PH, Berge KE, et al. Molecular autopsy in young sudden cardiac death victims with suspected cardiomyopathy. Forensic Sci Int. 2012;219(1–3):33–8.

    Article  CAS  PubMed  Google Scholar 

  129. Quarta G, Syrris P, Ashworth M, et al. Mutations in the lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2012;33(9):1128–36.

    Article  CAS  PubMed  Google Scholar 

  130. Hermida-Prieto M, Monserrat L, Castro-Beiras A, et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol. 2004;94(1):50–4.

    Article  PubMed  Google Scholar 

  131. van Rijsingen IA, Bakker A, Azim D, et al. Lamin A/C mutation is independently associated with an increased risk of arterial and venous thromboembolic complications. Int J Cardiol. 2013;168(1):472–7.

    Article  PubMed  Google Scholar 

  132. Frock RL, Chen SC, Da DF, et al. Cardiomyocyte-specific expression of lamin A improves cardiac function in Lmna−/− mice. PLoS One. 2012;7(8):e42918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arimura T, Helbling-Leclerc A, Massart C, et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet. 2005;14(1):155–69.

    Article  CAS  PubMed  Google Scholar 

  134. Anselme F, Moubarak G, Savoure A, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10(10):1492–8.

    Article  PubMed  Google Scholar 

  135. Benedetti S, Menditto I, Degano M, et al. Phenotypic clustering of lamin A/C mutations in neuromuscular patients. Neurology. 2007;69(12):1285–92.

    Article  CAS  PubMed  Google Scholar 

  136. van der Kooi AJ, Bonne G, Eymard B, et al. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy. Neurology. 2002;59(4):620–3.

    Article  PubMed  Google Scholar 

  137. Goizet C, Yaou RB, Demay L, et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J Med Genet. 2004;41(3):e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stewart CL, Kozlov S, Fong LG, Young SG. Mouse models of the laminopathies. Exp Cell Res. 2007;313(10):2144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15(8):369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. • Ramos FJ, Chen SC, Garelick MG, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med. 2012;4(144):144ra103. Novel insights into mTORC1 inhibition as possible therapeutic strategy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet. 2009;18(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  142. • Wu W, Muchir A, Shan J, Bonne G, Worman HJ. Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation. 2011;123(1):53–61. Feasibility for MAPK inhibitors in cardioprotection for LMNA cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  143. Wu W, Shan J, Bonne G, Worman HJ, Muchir A. Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta. 2010;1802(7–8):632–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ. Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle. 2013;3(1):17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Muchir A, Reilly SA, Wu W, et al. Treatment with selumetinib preserves cardiac function and improves survival in cardiomyopathy caused by mutation in the lamin A/C gene. Cardiovasc Res. 2012;93(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  146. Wu W, Iwata S, Homma S, Worman HJ, Muchir A. Depletion of extracellular signal-regulated kinase 1 in mice with cardiomyopathy caused by lamin A/C gene mutation partially prevents pathology before isoenzyme activation. Hum Mol Genet. 2014;23(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  147. Brunet A, Pouyssegur J. Mammalian MAP kinase modules: how to transduce specific signals. Essays Biochem. 1997;32:1–16.

    CAS  PubMed  Google Scholar 

  148. Wang CM, Cigliano A, Delogu S, et al. Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis Implications for the treatment of human liver cancer. Cell Cycle. 2013;12(13):1999–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dowling RJO, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta, Proteins and Proteomics. 2010;1804(3):433–9.

    Article  CAS  Google Scholar 

  150. Lisi L, Aceto P, Navarra P, Dello Russo C. mTOR kinase: a possible pharmacological target in the management of chronic pain. Biomed Res Int. 2015;2015:394257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Page C, Doubell AF. Mitogen-activated protein kinase (MAPK) in cardiac tissues. Mol Cell Biochem. 1996;157(1–2):49–57.

    CAS  PubMed  Google Scholar 

  152. Chen SC, Kennedy BK, Lampe PD. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Exp Cell Res. 2013;319(6):888–96.

    Article  CAS  PubMed  Google Scholar 

  153. Muchir A, Wu W, Choi JC, et al. Abnormal p38 mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet. 2012;21(19):4325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chatzifrangkeskou M, Le Dour C, Wu W, et al. ERK1/2 directly acts on CTGF/CCN2 expression to mediate myocardial fibrosis in cardiomyopathy caused by mutations in the lamin A/C gene. Hum Mol Genet. 2016;25:2220–33.

    Article  CAS  PubMed  Google Scholar 

  155. Choi JC, Muchir A, Wu W, et al. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med. 2012;4(144):144ra102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ. Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem. 2012;287(48):40513–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature. 2013;497(7450):507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71(2):426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cao K, Capell BC, Erdos MR, Djabali K, Collins FS. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A. 2007;104(12):4949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Young SG, Meta M, Yang SH, Fong LG. Prelamin A farnesylation and progeroid syndromes. J Biol Chem. 2006;281(52):39741–5.

    Article  CAS  PubMed  Google Scholar 

  161. Liu BH, Wang ZM, Zhang L, Ghosh S, Zheng HL, Zhou ZJ. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat Commun. 2013;4:1868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Fong LG, Frost D, Meta M, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006;311(5767):1621–3.

    Article  CAS  PubMed  Google Scholar 

  163. Toth JI, Yang SH, Qiao X, et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A. 2005;102(36):12873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Capell BC, Erdos MR, Madigan JP, et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2005;102(36):12879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gordon LB, Kleinman ME, Miller DT, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institutes of Health (R01HL103931) and the Collins Family Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang MD.

Ethics declarations

Conflict of Interest

Xi Wang, Allyson Zabell, and Wonshill Koh each declare no potential conflicts of interest.

W. H. Wilson Tang reports grants from the National Institutes of Health. Dr. Tang is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zabell, A., Koh, W. et al. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. Curr Treat Options Cardio Med 19, 21 (2017). https://doi.org/10.1007/s11936-017-0520-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0520-z

Keywords

Navigation