Skip to main content
Log in

How Do We Treat Complex Calcified Coronary Artery Disease?

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Despite significant advances in treatment of coronary artery disease and improvements in interventional devices and techniques, the subset of obstructive calcified coronary artery disease remains challenging to treat. Percutaneous treatment of these lesions results in increased rates of procedural complications, as well as a higher risk of stent underexpansion and malapposition. This is associated with higher rates of restenosis, target lesion revascularization (TLR), and major adverse cardiac events (MACE). Several interventional strategies and technologies have been developed to improve lesion preparation and successful stent implantation. This includes use of cutting and scoring balloons and atherectomy devices. Several intravascular imaging techniques have also shown to have value in the treatment of complex calcified coronary lesions. These advances have improved the treatment of patients with calcified coronary disease who are often difficult to treat and frequently excluded from large randomized trials. Thoughtful, and not routine, use of rotational atherectomy can be helpful in pre-treating severely calcified lesions to achieve successful stent delivery. Orbital atherectomy represents a newer advancement in the atherectomy approach that may be beneficial in the treatment of calcified coronary disease, but further trials are needed to support its routine use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dehmer GJ, Weaver D, Roe MT, et al. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: a report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J Am Coll Cardiol. 2012;60(20):2017–31.

    Article  PubMed  Google Scholar 

  2. Sharma SK, Israel DH, Kamean JL, Bodian CA, Ambrose JA. Clinical, angiographic, and procedural determinants of major and minor coronary dissection during angioplasty. Am Heart J. 1993;126(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  3. Kawaguchi R, Tsurugaya H, Hoshizaki H, Toyama T, Oshima S, Taniguchi K. Impact of lesion calcification on clinical and angiographic outcome after sirolimus-eluting stent implantation in real-world patients. Cardiovasc Revasc Med. 2008;9(1):2–8.

    Article  PubMed  Google Scholar 

  4. Rathore S, Terashima M, Katoh O, et al. Predictors of angiographic restenosis after drug eluting stents in the coronary arteries: contemporary practice in real world patients. EuroIntervention. 2009;5(3):349–54.

    Article  PubMed  Google Scholar 

  5. Onuma Y, Tanimoto S, Ruygrok P, et al. Efficacy of everolimus eluting stent implantation in patients with calcified coronary culprit lesions: two-year angiographic and three-year clinical results from the SPIRIT II study. Catheter Cardiovasc Interv. 2010;76(5):634–42.

    Article  PubMed  Google Scholar 

  6. Fitzgerald PJ, Ports TA, Yock PG. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation. 1992;86(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  7. Kang SJ, Mintz GS, Park DW, et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis. Circ Cardiovasc Interv. 2011;4(1):9–14.

    Article  PubMed  Google Scholar 

  8. Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8.

    Article  CAS  PubMed  Google Scholar 

  9. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.

    Article  CAS  PubMed  Google Scholar 

  10. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  Google Scholar 

  11. Puri R, Nicholls SJ, Shao M, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65(13):1273–82.

    Article  CAS  PubMed  Google Scholar 

  12. Motro M, Shemesh J. Calcium channel blocker nifedipine slows down progression of coronary calcification in hypertensive patients compared with diuretics. Hypertension. 2001;37(6):1410–3.

    Article  CAS  PubMed  Google Scholar 

  13. Manson JE, Allison MA, Rossouw JE, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356(25):2591–602.

    Article  CAS  PubMed  Google Scholar 

  14. Zeb I, Ahmadi N, Nasir K, et al. Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: a randomized clinical trial. J Cardiovasc Dis Res. 2012;3(3):185–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.

    Article  CAS  PubMed  Google Scholar 

  16. Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–38.

    Article  PubMed  Google Scholar 

  17. Kim SW, Mintz GS, Lee WS, et al. DICOM-based intravascular ultrasound signal intensity analysis: an echoplaque medical imaging bench study. Coron Artery Dis. 2014;25(3):236–41.

    PubMed  Google Scholar 

  18. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  19. Mehanna E, Bezerra HG, Prabhu D, et al. Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography. Circ J. 2013;77(9):2334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gudmundsdottir I, Adamson P, Gray C, et al. Optical coherence tomography versus intravascular ultrasound to evaluate stent implantation in patients with calcific coronary artery disease. Open Heart. 2015;2(1):e000225-2014-000225. eCollection 2015.

  21. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation. 2011;124(23):e574–651.

    Article  PubMed  Google Scholar 

  22. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  CAS  PubMed  Google Scholar 

  23. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92(8):2333–42.

    Article  CAS  PubMed  Google Scholar 

  24. Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56(3):177–84.

    Article  PubMed  Google Scholar 

  25. Savage MP, Goldberg S, Hirshfeld JW, et al. Clinical and angiographic determinants of primary coronary angioplasty success. M-HEART investigators. J Am Coll Cardiol. 1991;17(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann R, Mintz GS, Popma JJ, et al. Treatment of calcified coronary lesions with Palmaz-Schatz stents. an intravascular ultrasound study. Eur Heart J. 1998;19(8):1224–31.

    Article  CAS  PubMed  Google Scholar 

  27. Bermejo J, Botas J, Garcia E, et al. Mechanisms of residual lumen stenosis after high-pressure stent implantation: a quantitative coronary angiography and intravascular ultrasound study. Circulation. 1998;98(2):112–8.

    Article  CAS  PubMed  Google Scholar 

  28. Diaz JF, Gomez-Menchero A, Cardenal R, Sanchez-Gonzalez C, Sanghvi A. Extremely high-pressure dilation with a new noncompliant balloon. Tex Heart Inst J. 2012;39(5):635–8.

    PubMed  PubMed Central  Google Scholar 

  29. Karvouni E, Stankovic G, Albiero R, et al. Cutting balloon angioplasty for treatment of calcified coronary lesions. Catheter Cardiovasc Interv. 2001;54(4):473–81.

    Article  CAS  PubMed  Google Scholar 

  30. Barath P, Fishbein MC, Vari S, Forrester JS. Cutting balloon: a novel approach to percutaneous angioplasty. Am J Cardiol. 1991;68(11):1249–52.

    Article  CAS  PubMed  Google Scholar 

  31. Hu XQ, Tang L, Zhou SH, Fang ZF, Shen XQ. A novel approach to facilitating balloon crossing chronic total occlusions: the “wire-cutting” technique. J Interv Cardiol. 2012;25(3):297–303.

    Article  PubMed  Google Scholar 

  32. Vaquerizo B, Serra A, Miranda F, et al. Aggressive plaque modification with rotational atherectomy and/or cutting balloon before drug-eluting stent implantation for the treatment of calcified coronary lesions. J Interv Cardiol. 2010;23(3):240–8.

    Article  PubMed  Google Scholar 

  33. Okura H, Hayase M, Shimodozono S, et al. Mechanisms of acute lumen gain following cutting balloon angioplasty in calcified and noncalcified lesions: an intravascular ultrasound study. Catheter Cardiovasc Interv. 2002;57(4):429–36.

    Article  PubMed  Google Scholar 

  34. Elliott JM, Berdan LG, Holmes DR, et al. One-year follow-up in the coronary angioplasty versus excisional atherectomy trial (CAVEAT I). Circulation. 1995;91(8):2158–66.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen EA, Sykora K, Kimball BP, et al. Clinical outcomes of patients more than one year following randomization in the Canadian Coronary Atherectomy Trial (CCAT). Can J Cardiol. 1997;13(9):825–30.

    CAS  PubMed  Google Scholar 

  36. Hansen DD, Auth DC, Vracko R, Ritchie JL. Rotational atherectomy in atherosclerotic rabbit iliac arteries. Am Heart J. 1988;115(1 Pt 1):160–5.

    Article  CAS  PubMed  Google Scholar 

  37. Kovach JA, Mintz GS, Pichard AD, et al. Sequential intravascular ultrasound characterization of the mechanisms of rotational atherectomy and adjunct balloon angioplasty. J Am Coll Cardiol. 1993;22(4):1024–32.

    Article  CAS  PubMed  Google Scholar 

  38. Mintz GS, Potkin BN, Keren G, et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation. 1992;86(5):1383–93.

    Article  CAS  PubMed  Google Scholar 

  39. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Leon MB. Preliminary experience with adjunct directional coronary atherectomy after high-speed rotational atherectomy in the treatment of calcific coronary artery disease. Am J Cardiol. 1993;71(10):799–804.

    Article  CAS  PubMed  Google Scholar 

  40. Levin TN, Holloway S, Feldman T. Acute and late clinical outcome after rotational atherectomy for complex coronary disease. Catheter Cardiovasc Diagn. 1998;45(2):122–30.

    Article  CAS  Google Scholar 

  41. Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997;96(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  42. Furuichi S, Sangiorgi GM, Godino C, et al. Rotational atherectomy followed by drug-eluting stent implantation in calcified coronary lesions. EuroIntervention. 2009;5(3):370–4.

    Article  PubMed  Google Scholar 

  43. Mezilis N, Dardas P, Ninios V, Tsikaderis D. Rotablation in the drug eluting era: immediate and long-term results from a single center experience. J Interv Cardiol. 2010;23(3):249–53.

    Article  PubMed  Google Scholar 

  44. Benezet J, de la Llera LS D, Cubero JM, Villa M, Fernandez-Quero M, Sanchez-Gonzalez A. Drug-eluting stents following rotational atherectomy for heavily calcified coronary lesions: long-term clinical outcomes. J Invasive Cardiol. 2011;23(1):28–32.

    PubMed  Google Scholar 

  45. Dardas P, Mezilis N, Ninios V, Tsikaderis D, Theofilogiannakos EK, Lampropoulos S. The use of rotational atherectomy and drug-eluting stents in the treatment of heavily calcified coronary lesions. Hell J Cardiol. 2011;52(5):399–406.

    Google Scholar 

  46. Jiang J, Sun Y, Xiang MX, et al. Complex coronary lesions and rotational atherectomy: one hospital’s experience. J Zhejiang Univ Sci B. 2012;13(8):645–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abdel-Wahab M, Baev R, Dieker P, et al. Long-term clinical outcome of rotational atherectomy followed by drug-eluting stent implantation in complex calcified coronary lesions. Catheter Cardiovasc Interv. 2013;81(2):285–91.

    Article  PubMed  Google Scholar 

  48. Chiang MH, Lee WL, Tsao CR, et al. The use and clinical outcomes of rotablation in challenging cases in the drug-eluting stent era. J Chin Med Assoc. 2013;76(2):71–7.

    Article  PubMed  Google Scholar 

  49. Tian W, Lhermusier T, Minha S, Waksman R. Rational use of rotational atherectomy in calcified lesions in the drug-eluting stent era: review of the evidence and current practice. Cardiovasc Revasc Med. 2015;16(2):78–83.

    Article  PubMed  Google Scholar 

  50. •Abdel-Wahab M, Richardt G, Joachim Buttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013;6(1):10–9. The ROTAXUS study, a randomized trial, examined the impact of rotational atherectomy on long-term outcomes of drug-eluting stent implantation, and did not show a benefit of routine use of rotational atherectomy in patients with moderately or severely calcified, obstructive coronary artery disease.

    Article  PubMed  Google Scholar 

  51. Bangalore S, Vlachos HA, Selzer F, et al. Percutaneous coronary intervention of moderate to severe calcified coronary lesions: insights from the National Heart, Lung, and Blood Institute Dynamic Registry. Catheter Cardiovasc Interv. 2011;77(1):22–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Couper LT, Loane P, Andrianopoulos N, et al. Utility of rotational atherectomy and outcomes over an eight-year period. Catheter Cardiovasc Interv. 2015;86(4):626–31.

    Article  PubMed  Google Scholar 

  53. Tomey MI, Kini AS, Sharma SK. Current status of rotational atherectomy. JACC Cardiovasc Interv. 2014;7(4):345–53.

    Article  PubMed  Google Scholar 

  54. Kume T, Okura H, Kawamoto T, et al. Assessment of the histological characteristics of coronary arterial plaque with severe calcification. Circ J. 2007;71(5):643–7.

    Article  PubMed  Google Scholar 

  55. Whitlow PL, Bass TA, Kipperman RM, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87(6):699–705.

    Article  CAS  PubMed  Google Scholar 

  56. Cohen MG, Ghatak A, Kleiman NS, et al. Optimizing rotational atherectomy in high-risk percutaneous coronary interventions: insights from the PROTECT II study. Catheter Cardiovasc Interv. 2014;83(7):1057–64.

    Article  PubMed  Google Scholar 

  57. Appelman YE, Piek JJ, Redekop WK, et al. Clinical events following excimer laser angioplasty or balloon angioplasty for complex coronary lesions: subanalysis of a randomised trial. Heart. 1998;79(1):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Badr S, Ben-Dor I, Dvir D, et al. The state of the excimer laser for coronary intervention in the drug-eluting stent era. Cardiovasc Revasc Med. 2013;14(2):93–8.

    Article  PubMed  Google Scholar 

  59. Stone GW, de Marchena E, Dageforde D, et al. Prospective, randomized, multicenter comparison of laser-facilitated balloon angioplasty versus stand-alone balloon angioplasty in patients with obstructive coronary artery disease. The Laser Angioplasty Versus Angioplasty (LAVA) Trial Investigators. J Am Coll Cardiol. 1997;30(7):1714–21.

    Article  CAS  PubMed  Google Scholar 

  60. Latib A, Takagi K, Chizzola G, et al. Excimer Laser LEsion modification to expand non-dilatable stents: the ELLEMENT registry. Cardiovasc Revasc Med. 2014;15(1):8–12.

    Article  PubMed  Google Scholar 

  61. Parikh K, Chandra P, Choksi N, Khanna P, Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81(7):1134–9.

    Article  PubMed  Google Scholar 

  62. •Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7(5):510–8. The ORBIT II trial evaluated the use of orbital atherectomy in treating severely calcified lesions. The trial met the safety and efficacy endpoints and demonstrated that orbital atherectomy is a reasonable approach to plaque modification prior to stenting in calcified lesions.

    Article  PubMed  Google Scholar 

  63. Genereux P, Lee AC, Kim CY, et al. Orbital atherectomy for treating de novo severely calcified coronary narrowing (1-year results from the pivotal ORBIT II trial). Am J Cardiol. 2015;115(12):1685–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Anwaruddin MD FACC FSCAI.

Ethics declarations

Conflict of Interest

Paul N. Fiorilli declares no potential conflicts of interest.

Saif Anwaruddin is a consultant for Edwards, Medtronic, and American College of Radiology.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorilli, P.N., Anwaruddin, S. How Do We Treat Complex Calcified Coronary Artery Disease?. Curr Treat Options Cardio Med 18, 72 (2016). https://doi.org/10.1007/s11936-016-0498-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0498-y

Keywords

Navigation