Skip to main content

Advertisement

Log in

Direct Cardiac Cellular Reprogramming for Cardiac Regeneration

  • Regenerative Medicine and Stem-cell Therapy (SM Wu and P Hsieh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Direct cardiac cellular reprogramming of endogenous cardiac fibroblasts directly into induced cardiomyocytes is a highly feasible, promising therapeutic option for patients with advanced heart failure. The most successful cardiac reprogramming strategy will likely be a multimodal approach involving an optimal combination of cardio-differentiating factors, suppression of fibroblast gene expression, and induction of angiogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baran DA, Jaiswal A. Management of the ACC/AHA Stage D patient: mechanical circulatory support. Cardiol Clin. 2014;32(1):113–24. viii-ix.

    Article  PubMed  Google Scholar 

  2. Kittleson MM, Kobashigawa JA. Management of the ACC/AHA Stage D patient: cardiac transplantation. Cardiol Clin. 2013;32(1):95–112. viii.

    Article  PubMed  Google Scholar 

  3. Fisher SA, Zhang H, Doree C, Mathur A, Martin-Rendon E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2015;9, CD006536. This Cochrane review summarizes the results of 41 randomized controlled trials involving bone-marrow stem cell implantation for patients with ischemic heart disease. The difference in left ventricular ejection fraction between the treated and untreated groups was 2–5 %, which was determined to not be clinically relevant.

    PubMed  Google Scholar 

  4. Nagalingam RS, Safi HA, Czubryt MP. Gaining myocytes or losing fibroblasts: challenges in cardiac fibroblast reprogramming for infarct repair. J Mol Cell Cardiol. 2015; 108–14.

  5. Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116(8):1378–91.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;4:663–76. This historic study established that terminally differentiated cells may be reprogrammed into induced pluripotent stem (iPS) cells using transcription factors Oct4, Sox2, Klf4, and c-myc, ultimately establishing that cellular reprogramming is needed possible. This study preceded the investigation of lineage-based reprogramming for cardiac, hepatic, and neuronal cells.

    Article  Google Scholar 

  7. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;3:375–86. Following Yamanaka’s methodology, Srivastava and Ieda et al. discovered that defined factors Gata4, Mef2c, and Tbx5, which are important in cardiac embryology, may reprogram cardiac fibroblasts into induced cardiomyocytes (iCMs).

    Article  Google Scholar 

  8. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. This in vivo extension of Srivastava and Ieda et al. established that GMT administration in infarct murine models results in improved cardiac function and reduced fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srivastava D, Ieda M, Fu J, Qian L. Cardiac repair with thymosin β4 and cardiac reprogramming factors. Ann N Y Acad Sci. 2012;1270:66–72.

    Article  CAS  PubMed  Google Scholar 

  10. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. 2012;111(9):1147–56.

    Article  CAS  PubMed  Google Scholar 

  12. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc. 2012;1(6), e005652.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mathison M, Singh VP, Gersch RP, Ramirez MO, Cooney A, Kaminsky SM, et al. “Triplet” polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors. J Thorac Cardiovasc Surg. 2014;148(4):1656–1664.e2.

    Article  CAS  PubMed  Google Scholar 

  15. Ma H, Wang L, Yin C, Liu J, Qian L. In vivo cardiac reprogramming using an optimal single polycistronic construct. Cardiovasc Res. 2015;108(2):217–9.

    Article  PubMed  Google Scholar 

  16. Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Batty JA, Lima JA, Kunadian V. Direct cellular reprogramming for cardiac repair and regeneration. Eur J Heart Fail. 2015;18(2):145–56. This reference provides an excellent comparison of the various cardiac regeneration strategies.

    Article  PubMed  Google Scholar 

  18. He WJ, Hou Q, Han QW, Han WD, Fu XB. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration. Tissue Eng B Rev. 2013;20(4):304–13.

    Article  Google Scholar 

  19. Ogle BM, Bursac N, Domian I, Huang NF, Menasche P, Murry CE, et al. Distilling complexity to advance cardiac tissue engineering. Sci Transl Med. 2016;8(342):342ps13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2012;7432:433–6.

    Article  Google Scholar 

  21. Sharma A, Zhang Y, Wu SM. Harnessing the induction of cardiomyocyte proliferation for cardiac regenerative medicine. Curr Treat Options Cardiovasc Med. 2015;17(10):404.

    Article  PubMed  Google Scholar 

  22. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.

    Article  CAS  PubMed  Google Scholar 

  23. Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, et al. Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. PNAS. 2013;110(31):12667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y, et al. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res. 2014;116(2):237–44.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res. 2012;111(1):50–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N. Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res. 2013;100(1):105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou H, Dickson ME, Kim MS, Bassel-Duby R, Olson EN. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. PNAS. 2015;112(38):11864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Addis RC, Ifkovits JL, Pinto F, Kellam LD, Esteso P, Rentschler S, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 2013;60:97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou L, Liu Y, Lu L, Lu X, Dixon RA. Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd. PLoS One. 2012;7(10), e48028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol. 2012;53(3):323–32.

    Article  CAS  PubMed  Google Scholar 

  31. Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS One. 2013;8(5), e63577.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGF-beta signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 2014;9(2), e89678.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O’Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;10(6):8243.

    Article  Google Scholar 

  34. Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, et al. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Rep. 2014;6(5):951–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25(9):1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell. 2016;3:382–95.

    Article  Google Scholar 

  37. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, et al. Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions. Stem Cell Rep. 2015;5(6):1128–42.

    Article  CAS  Google Scholar 

  38. Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014;33(14):1565–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, et al. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. PNAS. 2012;109(32):13016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 2013;1(3):235–47.

    Article  CAS  Google Scholar 

  41. Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. PNAS. 2013;110(14):5588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352(6290):1216–20.

    Article  CAS  PubMed  Google Scholar 

  43. Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell. 2008;4:537–43.

    Article  Google Scholar 

  44. Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regeneration (London, England). 2015;4:10.

    Article  PubMed Central  Google Scholar 

  45. Qin H, Diaz A, Blouin L, Lebbink RJ, Patena W, Tanbun P, et al. Systematic identification of barriers to human iPSC generation. Cell. 2014;158(2):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nam YJ, Lubczyk C, Bhakta M, Zang T, Fernandez-Perez A, McAnally J, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development. 2014;141(22):4267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Heart Lung and Blood Institute (1R01HL121294-01A1 [TR]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd K. Rosengart MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine and Stem-cell Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Mathison, M., Singh, V.P. et al. Direct Cardiac Cellular Reprogramming for Cardiac Regeneration. Curr Treat Options Cardio Med 18, 58 (2016). https://doi.org/10.1007/s11936-016-0480-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0480-8

Keywords

Navigation