Skip to main content

Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction

  • Protocol
  • First Online:
Cardiac Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1521))

Abstract

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds great promise as a novel therapy for the treatment of heart failure, a common and morbid disease that is usually caused by irreversible loss of functional cardiomyocytes (CMs). Recently, we and others showed that in a murine model of acute myocardial infarction, delivery of three transcription factors, Gata4, Mef2c, and Tbx5 converted endogenous cardiac fibroblasts into functional iCMs. These iCMs integrated electrically and mechanically with surrounding myocardium, resulting in a reduction in scar size and an improvement in heart function. Our findings suggest that iCM reprogramming may be a means of regenerating functional CMs in vivo for patients with heart disease. However, because relatively little is known about the factors that regulate iCM reprogramming, the applicability of iCM reprogramming is currently limited to the experimental settings in which it has been attempted. Specific hurdles include the relatively low conversion rate of iCMs and the need for reprogramming to occur in the context of acute injury. Therefore, before this treatment can become a viable therapy for human heart disease, the optimal condition for efficient iCM generation must be determined. Here, we provide a detailed protocol for both in vitro and in vivo iCM generation that has been optimized so far in our lab. We hope that this protocol will lay a foundation for future further improvement of iCM generation and provide a platform for mechanistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, on behalf of the American Heart Association Statistics C, Stroke Statistics S (2013) Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  2. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190. doi:10.1126/science.1077857

    Article  CAS  PubMed  Google Scholar 

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. doi:10.1126/science.1164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quaini F, Urbanek K, Graiani G, Lagrasta C, Maestri R, Monica M, Boni A, Ferraro F, Delsignore R, Tasca G, Leri A, Kajstura J, Quaini E, Anversa P (2004) The regenerative potential of the human heart. Int J Cardiol 95(Suppl 1):S26–S28

    Article  PubMed  Google Scholar 

  5. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272(1 Pt 2):H220–H226

    CAS  PubMed  Google Scholar 

  6. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433. doi:10.1038/nature11682

    Article  CAS  PubMed  Google Scholar 

  7. Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, Doevendans PA, Field LJ (2008) Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 78(1):18–25. doi:10.1093/cvr/cvm101

    Article  CAS  PubMed  Google Scholar 

  8. Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ (1997) Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 99(11):2644–2654. doi:10.1172/JCI119453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13(8):962–969. doi:10.1038/nm1619

    Article  PubMed  Google Scholar 

  10. Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 103(42):15546–15551. doi:10.1073/pnas.0607382103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2):257–270. doi:10.1016/j.cell.2009.04.060

    Article  CAS  PubMed  Google Scholar 

  12. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381. doi:10.1038/nature11739

    Article  CAS  PubMed  Google Scholar 

  13. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335. doi:10.1038/nature10147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680

    Article  CAS  PubMed  Google Scholar 

  15. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23(6):772–780

    Article  CAS  PubMed  Google Scholar 

  16. Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441(7097):1097–1099

    Article  CAS  PubMed  Google Scholar 

  17. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28. doi:10.1016/j.stem.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mummery CL, Davis RP, Krieger JE (2010) Challenges in using stem cells for cardiac repair. Sci Transl Med 2(27):27ps17. doi:10.1126/scitranslmed.3000558

    Article  PubMed  Google Scholar 

  19. Mathur A, Martin JF (2004) Stem cells and repair of the heart. Lancet 364(9429):183–192. doi:10.1016/S0140-6736(04)16632-4

    Article  CAS  PubMed  Google Scholar 

  20. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105(10):934–947. doi:10.1161/CIRCRESAHA.109.201400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16(2):233–244. doi:10.1016/j.devcel.2008.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291(3):H1015–H1026. doi:10.1152/ajpheart.00023.2006

    Article  CAS  PubMed  Google Scholar 

  23. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176. doi:10.1161/CIRCRESAHA.109.209809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455(7213):627–632. doi:10.1038/nature07314, nature07314 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526. doi:10.1038/nature09591

    Article  CAS  PubMed  Google Scholar 

  27. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284): 1035–1041. doi:10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223. doi:10.1038/nature10202

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356): 386–389. doi:10.1038/nature10116

    Article  CAS  PubMed  Google Scholar 

  30. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475(7356):390–393. doi:10.1038/nature10263

    Article  CAS  PubMed  Google Scholar 

  31. Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, Engels MC, Rajarajan K, Karra R, Abel ED, Wu JC, Milan D, Wu SM (2012) Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res 111(1):50–55. doi:10.1161/CIRCRESAHA.112.270264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386. doi:10.1016/j.cell.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473. doi:10.1161/CIRCRESAHA.112.269035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U (2012) A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 53(3):323–332. doi:10.1016/j.yjmcc.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  35. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598. doi:10.1038/nature11044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604. doi:10.1038/nature11139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y, Bursac N, Liu J, Qian L (2015) Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming. Circ Res 116(2):237–244. doi:10.1161/CIRCRESAHA.116.305547

    Article  CAS  PubMed  Google Scholar 

  38. Ma H, Wang L, Yin C, Liu J, Qian L (2015) In vivo cardiac reprogramming using an optimal single polycistronic construct. Cardiovasc Res 108(2):217–219. doi:10.1093/cvr/cvv223

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qian L, Berry EC, Fu JD, Ieda M, Srivastava D (2013) Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc 8(6):1204–1215. doi:10.1038/nprot.2013.067

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Qian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, H., Wang, L., Liu, J., Qian, L. (2017). Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction. In: Ishikawa, K. (eds) Cardiac Gene Therapy. Methods in Molecular Biology, vol 1521. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6588-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6588-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6586-1

  • Online ISBN: 978-1-4939-6588-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics