Skip to main content

Advertisement

Log in

Cardiac Imaging in Adults With Congenital Heart Disease: Unknowns and Issues Related to Diagnosis

  • Pediatric and Congenital Heart Disease (G Singh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Many adults with simple and complex congenital heart disease (CHD) survive to adulthood. The goal of imaging is to diagnose the underlying anomalies and to detect late complications of their CHD and past surgical repair, in order to assess the need for further intervention and better prepare for endovascular or open-heart surgery. Cardiac magnetic resonance imaging (MRI) and computerized tomography (CT) are increasingly utilized in this patient population, due to the technical advances made to these modalities in the past decade regarding image acquisition and reconstruction, spatial and temporal resolution, and radiation dose reduction. Here, we aim to review the role of cardiac MR in initial diagnosis, pre-treatment planning and post-surgical follow-up of adults with CHD, and to discuss the ancillary role of cardiac CT in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fernandes SM, Pearson DD, Rzeszut A, American College of Cardiology, Adult Congenital Heart Disease Working Group, Adult Congenital Cardiac Care Associate Research Network, et al. Adult congenital heart disease incidence and consultation: a survey of general adult cardiologists. J Am Coll Cardiol. 2013;61(12):1303–4.

    Article  PubMed  Google Scholar 

  2. Reid GJ, Irvine MJ, McCrindle BW, et al. Prevalence and correlates of successful transfer from pediatric to adult health care among a cohort of young adults with complex congenital heart defects. Pediatrics. 2004;113(3 Pt 1):e197–205.

    Article  PubMed  Google Scholar 

  3. Pignatelli RH, McMahon CJ, Chung T, Vick 3rd GW. Role of echocardiography versus MRI for the diagnosis of congenital heart disease. Curr Opin Cardiol. 2003;18(5):357–65.

    Article  PubMed  Google Scholar 

  4. Puranik R, Muthurangu V, Celermajer DS, Taylor AM. Congenital heart disease and multi-modality imaging. Heart Lung Circ. 2010;19(3):133–44.

    Article  PubMed  Google Scholar 

  5. Watts Jr JR, Sonavane SK, Singh SP, Nath PH. Pictorial review of multidetector CT imaging of the preoperative evaluation of congenital heart disease. Curr Probl Diagn Radiol. 2013;42(2):40–56. The technical aspects in CT imaging of CHD is well described in this article, including scanning protocols. This is useful for the individual who plans to begin imaging CHD patients in their practice.

    Article  PubMed  Google Scholar 

  6. Bandettini WP, Arai AE. Advances in clinical applications of cardiovascular magnetic resonance imaging. Heart. 2008;94(11):1485–95.

    Article  PubMed  CAS  Google Scholar 

  7. Haramati LB, Glickstein JS, Issenberg HJ, et al. MR imaging and CT of vascular anomalies and connections in patients with congenital heart disease: significance in surgical planning. RadioGraphics. 2002;22(337–347):348–9.

    Google Scholar 

  8. Gutiérrez FR, Ho ML, Siegel MJ. Practical applications of magnetic resonance in congenital heart disease. Magn Reson Imaging Clin N Am. 2008;16(3):403–35.

    Article  PubMed  Google Scholar 

  9. Haselgrove JC, Simonetti O. MRI for physiology and function: technical advances in MRI of congenital heart disease. Semin Roentgenol. 1998;33(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  10. Gutierrez FR, Siegel MJ, Fallah JH, Poustchi-Amin M. Magnetic resonance imaging of cyanotic and noncyanotic congenital heart disease. Magn Reson Imaging Clin N Am. 2002;10(2):209–35.

    Article  PubMed  Google Scholar 

  11. Rebergen SA, Niezen RA, Helbing WA, et al. Cine gradient-echo MR imaging and MR velocity mapping in the evaluation of congenital heart disease. RadioGraphics. 1996;16(3):467–81.

    PubMed  CAS  Google Scholar 

  12. Goldberg A, Jha S. Phase-contrast MRI and applications in congenital heart disease. Clin Radiol. 2012;67(5):399–410. This is a comprehensive review of various anomalies related to CHD, with a strong emphasis of what information can be derived by MR and CT regarding planning surgery on such patients.

    Article  PubMed  CAS  Google Scholar 

  13. Wang ZJ, Reddy GP, Gotway MB, et al. Cardiovascular shunts: MR imaging evaluation. Radiographics. 2003;23 Spec No:S181-94.

    Google Scholar 

  14. Hartke LP, Gilkeson RC, O'Riordan MA, Siwik ES. Evaluation of right ventricular fibrosis in adult congenital heart disease using gadolinium-enhanced magnetic resonance imaging: initial experience in patients with right ventricular loading conditions. Congenit Heart Dis. 2006;1(5):192–201.

    Article  PubMed  Google Scholar 

  15. Rubinshtein R, Glockner JF, Ommen SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(1):51–8.

    Article  PubMed  Google Scholar 

  16. Cummings KW, Bhalla S, Javidan-Nejad C, et al. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. RadioGraphics. 2009;29(1):89–103. This article provides a comprehensive review of the role of delayed gadolinium MR imaging in both inherited and acquired nonischemic cardiomyopathies in children and adults. It provides an easy-to-understand diagram.

    Article  PubMed  Google Scholar 

  17. Ismail TF, Prasad SK, Pennell DJ. Prognostic importance of late gadolinium enhancement cardiovascular magnetic resonance in cardiomyopathy. Heart. 2012;98(6):438–42.

    Article  PubMed  Google Scholar 

  18. Yun H, Zeng MS, Jin H, Yang S. Isolated noncompaction of ventricular myocardium: a magnetic resonance imaging study of 11 patients. Korean J Radiol. 2011;12(6):686–92.

    Article  PubMed  Google Scholar 

  19. Kilner PJ. Imaging congenital heart disease in adults. Br J Radiol. 2011;84(Spec No 3):S258–68.

    Article  PubMed  Google Scholar 

  20. Reinhartz O, Reddy VM, Petrossian E, et al. Unifocalization of major aortopulmonary collaterals in single-ventricle patients. Ann Thorac Surg. 2006;82:934–9.

    Article  PubMed  Google Scholar 

  21. Andrews RE, Tulloh RMR, Anderson DR. Coil occlusion of systemic venous collaterals in hypoplastic left heart syndrome. Heart. 2002;88:167–9.

    Article  PubMed  CAS  Google Scholar 

  22. Makowski MR, Wiethoff AJ, Uribe S, et al. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology. 2011;260(3):680–8.

    Article  PubMed  Google Scholar 

  23. Hernandez RJ. Magnetic resonance imaging of mediastinal vessels. Magn Reson Imaging Clin N Am. 2002;10(2):237–51.

    Article  PubMed  Google Scholar 

  24. Prasad SK, Soukias N, Hornung T, et al. Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation. 2004;109(2):207–14.

    Article  PubMed  Google Scholar 

  25. Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. RadioGraphics. 2007;27:829–46.

    Article  PubMed  Google Scholar 

  26. Cook SC, Raman SV. Multidetector computed tomography in the adolescent and young adult with congenital heart disease. J Cardiovasc Comput Tomogr. 2008;2(1):36–49.

    Article  PubMed  Google Scholar 

  27. Khan NU, Yonan N. Does preoperative computed tomography reduce the risks associated with re-do cardiac surgery? Interact Cardiovasc Thorac Surg. 2009;9(1):119–23.

    Article  PubMed  Google Scholar 

  28. Fogel MA, Hubbard AM, Fellows KE, Weinberg PM. MRI for physiology and function in congenital heart disease: functional assessment of the heart preoperatively and postoperatively. Semin Roentgenol. 1998;33(3):239–51.

    Article  PubMed  CAS  Google Scholar 

  29. van Straten A, Vliegen HW, Lamb HJ, et al. Time course of diastolic and systolic function improvement after pulmonary valve replacement in adult patients with tetralogy of Fallot. J Am Coll Cardiol. 2005;46(8):1559–64.

    Article  PubMed  Google Scholar 

  30. Bonello B, Kilner PJ. Review of the role of cardiovascular magnetic resonance in congenital heart disease, with a focus on right ventricle assessment. Arch Cardiovasc Dis. 2012;105(11):605–13. The is a good review of the various techniques used for cardiac MR. Assessment of right ventricular function is the most common reason a patient is referred from the adult congenital heart disease clinic for crdiac MR imaging in our clinical practice.

    Article  PubMed  Google Scholar 

  31. Romeih S, Kroft LJ, Bokenkamp R, et al. Delayed improvement of right ventricular diastolic function and regression of right ventricular mass after percutaneous pulmonary valve implantation in patients with congenital heart disease. Am Heart J. 2009;158(1):40–6.

    Article  PubMed  Google Scholar 

  32. Frigiola A, Tsang V, Nordmeyer J, Lurz P, et al. Current approaches to pulmonary regurgitation. Eur J Cardiothorac Surg. 2008;34(3):576–80.

    Article  PubMed  Google Scholar 

  33. Adamson L, Vohra HA, Haw MP. Does pulmonary valve replacement post repair of tetralogy of Fallot improve right ventricular function? Interact Cardiovasc Thorac Surg. 2009;9(3):520–7.

    Article  PubMed  Google Scholar 

  34. Angtuaco MJ, Sachdeva R, Jaquiss RD, et al. Long-term outcomes of intraoperative pulmonary artery stent placement for congenital heart disease. Catheter Cardiovasc Interv. 2011;77(3):395–9.

    Article  PubMed  Google Scholar 

  35. Kavey RE. Optimal management strategies for patients with complex congenital heart disease. Circulation. 2006;113(22):2569–71.

    Article  PubMed  Google Scholar 

  36. Grotenhuis HB, de Roos A, Ottenkamp J, et al. MR imaging of right ventricular function after the Ross procedure for aortic valve replacement: initial experience. Radiology. 2008;246(2):394–400.

    Article  PubMed  Google Scholar 

  37. Lakoma A, Tuite D, Sheehan J, et al. Measurement of pulmonary circulation parameters using time-resolved MR angiography in patients after Ross procedure. AJR Am J Roentgenol. 2010;194(4):912–9.

    Article  PubMed  Google Scholar 

  38. Siegel MJ, Bhalla S, Gutierrez FR, Billadello JB. MDCT of postoperative anatomy and complications in adults with cyanotic heart disease. AJR. 2005;184:241–7.

    Article  PubMed  Google Scholar 

  39. Kiyokawa K, Goh K, Akasaka N, Kadohama T, Kazuno K, Sasajima T. Correction of tetralogy of Fallot in an adult using a stented bioprosthetic valved conduit. Gen Thorac Cardiovasc Surg. 2011;59(6):422–5.

    Article  PubMed  Google Scholar 

  40. Bottega NA, Silversides CK, Oechslin EN, et al. Stenosis of the superior limb of the systemic venous baffle following a Mustard procedure: an under-recognized problem. Int J Cardiol. 2012;154(1):32–7.

    Article  PubMed  Google Scholar 

  41. Bhalla S, Javidan-Nejad C, Bierhals AJ, et al. CT in the evaluation of congenital heart disease in children, adolescents, and young adults. Curr Treat Options Cardiovasc Med. 2008;10(5):425–32.

    Article  PubMed  Google Scholar 

  42. Woodard PK, Bhalla S, Javidan-Nejad C, et al. Cardiac MRI in the management of congenital heart disease in children, adolescents, and young adults. Curr Treat Options Cardiovasc Med. 2008;10(5):419–24.

    Article  PubMed  Google Scholar 

  43. Wagner M, Nguyen KL, Khan S, et al. Contrast-enhanced MR angiography of cavopulmonary connections in adult patients with congenital heart disease. AJR Am J Roentgenol. 2012;199(5):W565–74.

    Article  PubMed  Google Scholar 

  44. Goo HW, Yang DH, Park IS, et al. Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging. 2007;25(4):727–36.

    Article  PubMed  Google Scholar 

  45. Parra DA, Vera K. New imaging modalities to assess cardiac function: not just pretty pictures. Curr Opin Pediatr. 2012;24(5):557–64.

    Article  PubMed  Google Scholar 

  46. Grewal J, Al Hussein M, Feldstein J, et al. Evaluation of silent thrombus after the Fontan operation. Congenit Heart Dis. 2013;8(1):40–7.

    Article  PubMed  Google Scholar 

  47. Mantziari L, Babu-Narayan SV, Suman-Horduna I, et al. Atrial arrhythmia after Fontan surgery leads to giant thrombus: opening Pandora's box. Int J Cardiol. 2013;166(1):e23–4.

    Article  PubMed  Google Scholar 

  48. Heinemann M, Breuer J, Steger V, et al. Incidence and impact of systemic venous collateral development after Glenn and Fontan procedures. Thorac Cardiovasc Surg. 2001;49:172–8.

    Article  PubMed  CAS  Google Scholar 

  49. Kanter KR, Vincent RN, Raviele AA. Importance of acquired systemic-to-pulmonary collaterals in the Fontan operation. Ann Thorac Surg. 1999;68:969–75.

    Article  PubMed  CAS  Google Scholar 

  50. Chen JJ, Manning MA, Frazier AA, et al. CT angiography of the cardiac valves: normal, diseased, and postoperative appearances. RadioGraphics. 2009;29(5):1393–412.

    Article  PubMed  Google Scholar 

  51. Kim YM, Yoo SJ, Kim TH, Park IS, Kim WH, Lee JY, et al. Three-dimensional computed tomography in children with compression of the central airways complicating congenital heart disease. Cardiol Young. 2002;12(1):44–50.

    Article  PubMed  Google Scholar 

  52. Boiselle PM, Ernst A, DeCamp MM. CT diagnosis of complete tracheal rings in an adult. J Thorac Imaging. 2007;22(2):169–71.

    Article  PubMed  Google Scholar 

  53. Javidan-Nejad C. MDCT of trachea and main bronchi. Radiol Clin N Am. 2010;48(1):157–76.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Cylen Javidan-Nejad, Dr. Anderanik Tomasian, and Dr. Elham Najafpour reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cylen Javidan-Nejad MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javidan-Nejad, C., Tomasian, A. & Najafpour, E. Cardiac Imaging in Adults With Congenital Heart Disease: Unknowns and Issues Related to Diagnosis. Curr Treat Options Cardio Med 15, 663–674 (2013). https://doi.org/10.1007/s11936-013-0270-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-013-0270-5

Keywords

Navigation