Skip to main content

Advertisement

Log in

The Role of Iron, Omega-3 Fatty Acids, and Vitamins in Heart Failure

  • Heart Failure (J Fang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The high prevalence of iron deficiency in heart failure (HF), its easy detection, and its rapid treatment effects with intravenous compounds including, among other things, improved New York Heart Association class, quality of life, and exercise capacity, may offer a major new addition to the treatment of HF. Although more research is required in HF, iron deficiency has been recognized as a disease for over a century and there is no question that its correction is desirable for improving the health and the quality of life of the iron-deficient patient. Iron deficiency with or without an associated anemia should be routinely searched for and treated in HF patients. Controlled studies of omega-3 fish oils suggest that they are cardioprotective in HF. They also may have additional value as safe and highly effective analgesics and anti-inflammatory agents in HF patients who often cannot take traditional nonsteroidal agents. The American Heart Association has recently recommended use of fish and/or fish supplements for all patients with cardiovascular disease. However, practical questions remain. For example, it is not clear what the optimal ratio of the two major components of fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), should be in supplements. The role of other vitamins, such as vitamin D, in HF remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Chen J, Normand S-L T, Wang Y, Krumholz HN. National and regional trends in heart failure hospitalizations and mortality rates for medicare beneficiaries 1998-2008. JAMA. 2011;306:1669–78.

    Article  PubMed  CAS  Google Scholar 

  2. Lonn E, Bosch J, Yusuf S, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    Article  PubMed  Google Scholar 

  3. Marchioli R, Levantesi G, Macchia A, et al. GISSI-Prevenzione investigators. Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI-Prevenzione trial. J Cardiovasc Med. 2006;7:347–50.

    Article  Google Scholar 

  4. Miller 3rd ER, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.

    PubMed  CAS  Google Scholar 

  5. Clarke R, Halsey J, Lewington S, et al. B-vitamin treatment trialists’ collaboration effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Intern Med. 2010;170:1622–31.

    Article  PubMed  CAS  Google Scholar 

  6. Clarke R, Halsey J, Bennett D, Lewington S. J Inherit Metab Dis 2011, 34:83–91. Homocysteine and vascular disease: review of published results of the homocysteine-lowering trials. J Inherit Metab Dis. 2011;34:83–91.

    Google Scholar 

  7. Abraham JM, Cho L. The homocysteine hypothesis: still relevant to the prevention and treatment of cardiovascular disease? Cleve Clin J Med. 2010;77:911–8.

    Article  PubMed  Google Scholar 

  8. Sundström J, Sullivan L, Selhub J, et al. Relations of plasma homocysteine to left ventricular structure and function: the Framingham Heart Study. Eur Heart J. 2004;25:523–3.

    Article  PubMed  Google Scholar 

  9. Washio T, Nomoto K, Watanabe I, et al. Relationship between plasma homocysteine levels and congestive heart failure in patients with acute myocardial infarction. A high plasma homocysteine level in acute MI is a risk factor and an independent predictor for the development of heart failure. Int Heart J. 2011;52:224–8.

    Article  PubMed  CAS  Google Scholar 

  10. Vasan RS, Beiser A, D’Agostino RB, et al. Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. JAMA. 2003;289:1251–7.

    Article  PubMed  CAS  Google Scholar 

  11. Miller 3rd ER, Juraschek S, Pastor-Barriuso R, et al. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am J Cardiol. 2010;106:517–27.

    Article  PubMed  Google Scholar 

  12. Martí-Carvajal AJ, Solà I, Lathyris D, Salanti G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2009;7:CD006612.

    Google Scholar 

  13. Durga J, Bots ML, Schouten EG, et al. Effect of 3 years of folic acid supplementation on the progression of carotid intima-media thickness and carotid arterial stiffness in older adults. Am J Clin Nutr. 2011;93:941–9.

    Article  PubMed  CAS  Google Scholar 

  14. House AA, Eliasziw M, Cattran DC, et al. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial. JAMA. 2010;303:1603–9.

    Article  PubMed  CAS  Google Scholar 

  15. Agarwal M, Phan A, Willix Jr R, Barber M, Schwarz ER. Is vitamin D deficiency associated with heart failure? A review of current evidence. J Cardiovasc Pharmacol Ther. 2011;16:354–63.

    Article  PubMed  CAS  Google Scholar 

  16. Meems LM, van der Harst P, van Gilst WH, de Boer RA. Vitamin D biology in heart failure: molecular mechanisms and systematic review. Curr Drug Targets. 2011;12:29–41.

    Article  PubMed  CAS  Google Scholar 

  17. Witham MD. Vitamin D in chronic heart failure. Curr Heart Fail Rep. 2011;8:123–30.

    Article  PubMed  CAS  Google Scholar 

  18. Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.

    PubMed  CAS  Google Scholar 

  19. Witham MD, Crighton LJ, Gillespie ND, Struthers AD, McMurdo ME. The effects of vitamin D supplementation on physical function and quality of life in older patients with heart failure: a randomized controlled trial. Circ Heart Fail. 2010;3:195–201.

    Article  PubMed  CAS  Google Scholar 

  20. Monk RD, Bushinsky DA. Making sense of the latest advice on vitamin D therapy. J Am Soc Nephrol. 2011;22:994–8.

    Article  PubMed  CAS  Google Scholar 

  21. Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol. 2009;54:1660–73.

    Article  PubMed  CAS  Google Scholar 

  22. Sarma S, Gheorghiade M. Nutritional assessment and support of the patient with acute heart failure. Curr Opin Crit Care. 2010;16:413–8.

    Article  PubMed  Google Scholar 

  23. Lee JH, Jarreau T, Prasad A, et al. Nutritional assessment in heart failure patients. Congest Heart Fail. 2011;17:199–203.

    Article  PubMed  Google Scholar 

  24. Mozaffarian D, Wu JH. Omega-3 Fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58:2047–67. This paper summarizes all aspects of the role of omega-3 in cardiovascular diseases..

    Article  PubMed  CAS  Google Scholar 

  25. Nodari S, Triggiani M, Manerba A, Milesi G, Dei Cas L. Effects of supplementation with polyunsaturated fatty acids in patients with heart failure. Intern Emerg Med. 2011;6 Suppl 1:37–44.

    Article  PubMed  Google Scholar 

  26. Levantesi G, Silletta MG, Marchioli R. Uses and benefits of omega-3 ethyl esters in patients with cardiovascular disease. J Multidiscip Health. 2010;3:79–96.

    Google Scholar 

  27. Kromhout D, Yasuda S, Geleijnse JM, Shimokawa H. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work? Eur Heart J. 2011 Sep 26. [Epub ahead of print].

  28. Davidson MH, Kling D, Maki KC. Novel developments in omega-3 fatty acid-based strategies. Curr Opin Lipidol 2011 Oct 7. [Epub ahead of print].

  29. Jarreau TK, Lee JH, Lavie CJ, Ventura HO. Should we start prescribing omega-3 polyunsaturated fatty acids in chronic heart failure? Curr Heart Fail Rep 2011, Nov 3. [Epub ahead of print].

  30. Teng LL, Shao L, Zhao YT, et al. The beneficial effect of n-3 polyunsaturated fatty acids on doxorubicin-induced chronic heart failure in rats. J Int Med Res. 2010;38:940–8.

    PubMed  CAS  Google Scholar 

  31. Chen J, Shearer GC, Chen Q, et al. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation. 2011;123:584–93.

    Article  PubMed  CAS  Google Scholar 

  32. Duda MK, O’Shea KM, Tintinu A, et al. Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction. Cardiovasc Res. 2009;81:319–27.

    Article  PubMed  CAS  Google Scholar 

  33. Yamagishi K, Iso H, Date C, Japan Collaborative Cohort Study for Evaluation of Cancer Risk Study GroupFish, et al. omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J Am Coll Cardiol. 2008;52:988–96.

    Article  PubMed  CAS  Google Scholar 

  34. Yamagishi K, Nettleton JA, Folsom AR, ARIC Study Investigators. Plasma fatty acid composition and incident heart failure in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156:965–74.

    Article  PubMed  CAS  Google Scholar 

  35. Belin RJ, Greenland P, Martin L, et al. Fish intake and the risk of incident heart failure: the women’s health initiative. Circ Heart Fail. 2011;4:404–13.

    Article  PubMed  Google Scholar 

  36. Levitan EB, Wolk A, Mittleman MA. Fatty fish, marine omega-3 fatty acids and incidence of heart failure. Eur J Clin Nutr. 2010;64:587–94.

    Article  PubMed  CAS  Google Scholar 

  37. Mozaffarian D, Lemaitre RN, King IB, et al. Circulating long-chain {omega}-3 fatty acids and incidence of congestive heart failure in older adults: the cardiovascular health study: a cohort study. Ann Intern Med. 2011;155:160–70.

    PubMed  Google Scholar 

  38. Dijkstra SC, Brouwer IA, van Rooij FJ, et al. Intake of very long chain n-3 fatty acids from fish and the incidence of heart failure: the Rotterdam Study. Eur J Heart Fail. 2009;11:922–8.

    Article  PubMed  CAS  Google Scholar 

  39. Rupp H, Rupp TP, Alter P, Maisch B. Inverse shift in serum polyunsaturated and monounsaturated fatty acids is associated with adverse dilatation of the heart. Heart. 2010;96:595–8.

    Article  PubMed  CAS  Google Scholar 

  40. GISSI-Preventione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447–55.

    Article  Google Scholar 

  41. Marchioli R, Barzi F, Bomba E, GISSI-Prevenzione Investigators, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–903.

    Article  PubMed  CAS  Google Scholar 

  42. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  PubMed  CAS  Google Scholar 

  43. Macchia A, Levantesi G, Franzosi MG, et al. Left ventricular systolic dysfunction, total mortality, and sudden death in patients with myocardial infarction treated with n-3 polyunsaturated fatty acids. Eur J Heart Fail. 2005;7:904–9.

    Article  PubMed  CAS  Google Scholar 

  44. Latini R, Lucci D, Nicolosi GL, Porcu M, Tognoni G. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.

    Article  PubMed  Google Scholar 

  45. Ghio S, Scelsi L, Latini R, GISSI-HF investigators, et al. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail. 2010;12:1345–53.

    Article  PubMed  CAS  Google Scholar 

  46. Nodari S, Triggiani M, Campia U, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870–9. This small double-blind placebo-controlled study showed a significant improvement in many aspects of heart failure..

    Article  PubMed  CAS  Google Scholar 

  47. Moertl D, Hammer A, Steiner S et al. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J. 2011;161:915.e1–9.

    Google Scholar 

  48. Zhao YT, Shao L, Teng LL, et al. Effects of n-3 polyunsaturated fatty acid therapy on plasma inflammatory markers and N-terminal pro-brain natriuretic peptide in elderly patients with chronic heart failure. J Int Med Res. 2009;37:1831–41.

    PubMed  CAS  Google Scholar 

  49. Mehra MR, Lavie CJ, Ventura HO, Milani RV. Fish oils produce anti-inflammatory effects and improve body weight in severe heart failure. J Heart Lung Transplant. 2006;25:834–8.

    Article  PubMed  Google Scholar 

  50. Martínez-Quintana E, Rodríguez-González F, Torres-Fuentes E, López-Ríos L, Nieto-Lago V. Effect of omega-3 acids on clinical evolution, plasma inflammatory biomarkers and B-type natriuretic peptide levels in patients with coronary heart disease. Med Clin (Barc). 2011;136:574–7.

    Article  Google Scholar 

  51. Nodari S, Metra M. Milesi G The role of n-3 PUFAs in preventing the arrhythmic risk in patients with idiopathic dilated cardiomyopathy. Cardiovasc Drugs Ther. 2009;23:5–15.

    Article  PubMed  CAS  Google Scholar 

  52. Finzi AA, Latini R, Barlera S, et al. Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca (GISSI-HF) trial. Am Heart J. 2011;161:338–43.

    Article  PubMed  CAS  Google Scholar 

  53. Moertl D, Berger R, Hammer A, et al. Dose-dependent decrease of platelet activation and tissue factor by omega-3 polyunsaturated fatty acids in patients with advanced chronic heart failure. Thromb Haemost. 2011;106:457–65.

    Article  PubMed  CAS  Google Scholar 

  54. Cowie MR, Cure S, Bianic F, et al. Cost-effectiveness of highly purified omega-3 polyunsaturated fatty acid ethyl esters in the treatment of chronic heart failure: results of Markov modelling in a UK setting. Eur J Heart Fail. 2011;13:681–9.

    Article  PubMed  Google Scholar 

  55. Kowey PR, Reiffel JA, Ellenbogen KA, Naccarelli GV, Pratt CM. Efficacy and safety of prescription omega-3 fatty acids for the prevention of recurrent symptomatic atrial fibrillation: a randomized controlled trial. JAMA. 2010;304:2363–72.

    Article  PubMed  CAS  Google Scholar 

  56. Harris WS. Expert opinion: omega-3 fatty acids and bleeding-cause for concern? Am J Cardiol. 2007;99(6A):44C–6C.

    Article  PubMed  CAS  Google Scholar 

  57. Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe Jr JH, Spertus JA. Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction. Am J Cardiol. 2011, Sep 23. [Epub ahead of print].

  58. Goldberg RJ, Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain. 2007;129:210–23.

    Article  PubMed  CAS  Google Scholar 

  59. Galarraga B, Ho M, Youssef HM, et al. Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. Rheumatology. 2008;47:665–9.

    Article  PubMed  CAS  Google Scholar 

  60. Tokuyama S, Nakamoto K. Unsaturated fatty acids and pain. Biol Pharm Bull. 2011;34:1174–48.

    Article  PubMed  CAS  Google Scholar 

  61. Maroon JC, Bost JW. Omega-3 fatty acids (fish oil) as an anti-inflammatory: an alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg Neurol. 2006;65:326–3.

    Article  PubMed  Google Scholar 

  62. Ko GD, Nowacki NB, Arseneau L, Eitel M, Hum A. Omega-3 fatty acids for neuropathic pain: case series. Clin J Pain. 2010;26:168–72.

    Article  PubMed  Google Scholar 

  63. Tang WH, Samara MA. Polyunsaturated fatty acids in heart failure: should we give more and give earlier? J Am Coll Cardiol. 2011;57:880–3.

    Article  PubMed  CAS  Google Scholar 

  64. Smith SC, Benjamin EJ, Bonow RO et al, Guideline From the American Heart Association and American College of With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update : A AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patient AHA/ACCF Guideline AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update: A Guideline From the American Heart Association and American College of Cardiology Foundation. . Circulation published online November 3, 2011

  65. Fonarow GC. Statins and n-3 fatty acid supplementation in heart failure. Lancet. 2008;372:1195–6.

    Article  PubMed  Google Scholar 

  66. Jankowska EA, Rozentryt P, Witkowska A, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J. 2010;31:1872–80.

    Article  PubMed  CAS  Google Scholar 

  67. Parikh A, Natarajan S, Lipsitz SR, Katz SD. Iron deficiency in community-dwelling U.S. adults with self-reported heart failure in NHANES III: prevalence and associations with anemia and inflammation. Circ Heart Fail 2011 Jun 24. [Epub ahead of print].

  68. Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241–5.

    Article  PubMed  CAS  Google Scholar 

  69. Nanas JN, Matsouka C, Karageorgopoulos D, et al. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48:2485–9.

    Article  PubMed  Google Scholar 

  70. Maeder MT, Khammy O, dos Remedios C, Kaye DM. Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol. 2011;58:474–80.

    Article  PubMed  CAS  Google Scholar 

  71. Leszek P, Sochanowicz B, Szperl M, et al. Myocardial iron homeostasis in advanced chronic heart failure patients Int J Cardiol. 2011 Sep 5. [Epub ahead of print]

  72. Jankowska EA, Rozentryt P, Witkowska A, et al. Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure. J Card Fail. 2011;17:899–906.

    Article  PubMed  CAS  Google Scholar 

  73. Bolger AP, Bartlett FP, Penston HS, et al. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J Am Coll Cardiol. 2006;48:1225–7.

    Article  PubMed  CAS  Google Scholar 

  74. Usmanov RI, Zueva EB, Silverberg DS, Shaked M. Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J Nephrol. 2008;21:236–42.

    PubMed  CAS  Google Scholar 

  75. Gaber R, Kotb NA, Ghazy M, et al. Tissue doppler and strain rate imaging detect improvement of myocardial function in iron deficient patients with congestive heart failure after iron replacement therapy. Echocardiography. 2011 Nov 2. (Epub ahead of print)

  76. Toblli JE, Lombraña A, Duarte P, Di Gennaro F. Intravenous iron reduces NT- pro-BNP in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol. 2007;50:1657–65.

    Article  PubMed  CAS  Google Scholar 

  77. Okonko DO, Grzeslo A, Witkowski T, et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol. 2008;51:103–12.

    Article  PubMed  CAS  Google Scholar 

  78. Anker SD, Comin Colet J, et al. FAIR-HF trial investigators ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–48. This was a large, double-blind, placebo-controlled study of intravenous iron in heart failure showing a rapid and significant improvement in many parameters..

    Article  PubMed  CAS  Google Scholar 

  79. Palazzuoli A, Silverberg D, Iovine F et al. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am Heart J. 2006;152:1096.e9-15

    Google Scholar 

  80. Besarab A, Hörl WH, Silverberg D. Iron metabolism, iron deficiency, thrombocytosis, and the cardiorenal anemia syndrome. Oncologist. 2009;14 Suppl 1:22–33.

    Article  PubMed  CAS  Google Scholar 

  81. González-Costello J, Comín-Colet J. Iron deficiency and anaemia in heart failure: understanding the FAIR-HF trial. Eur J Heart Fail. 2010;12:1159–62.

    Article  PubMed  Google Scholar 

  82. van Veldhuisen DJ, Anker SD, Ponikowski P, Macdougall IC. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol. 2011;8:485–93.

    Article  PubMed  Google Scholar 

  83. Silverberg DS, Wexler D, Iaina A, Schwartz D. Correction of iron deficiency in the cardiorenal syndrome. Int J Nephrol. 2011;Apr 19 Epub 2011

  84. Nemeth E. Iron regulation and erythropoiesis. Curr Opin Hematol. 2008;15:169–75.

    Article  PubMed  CAS  Google Scholar 

  85. Weiss G. Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta. 2009;1790:682–93.

    Article  PubMed  CAS  Google Scholar 

  86. Ponka P. Cellular iron metabolism. Kidney Int Suppl. 1999;69:S2–S11.

    Article  PubMed  CAS  Google Scholar 

  87. Naito Y, Tsujino T, Matsumoto M, et al. Adaptive response of the heart to long term anemia induced by iron deficiency. Am J Physiol Heart Circ Physiol. 2009;296:H585–96.

    Article  PubMed  CAS  Google Scholar 

  88. Dong F, Zhang X, Culver B, et al. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrosome C release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci. 2005;109:277–86.

    Article  PubMed  CAS  Google Scholar 

  89. Rhodes CJ, Wharton J, Howard L et al. Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target. Eur Respir J. 2011;May 20. [Epub ahead of print].

  90. van der Meer P, Groenveld H, Januzzi Jr JL, van Veldhuisen DJ. Erythropoietin treatment in patients with Chronic Heart Failure: a meta-analysis. Heart. 2009;95:1309–14.

    Article  PubMed  Google Scholar 

  91. Ngo K, Kotecha D, Walters JA, et al. Erythropoiesis-stimulating agents for anaemia in chronic heart failure patients. Cochrane Database Syst Rev 2010;(1):CD007613.

  92. Desai A, Lewis E, Solomon S, et al. Impact of erythropoiesis-stimulating agents on morbidity and mortality in patients with heart failure: an updated, post-TREAT metaanalysis. Eur J Heart Fail. 2010;12:936–42.

    Article  PubMed  Google Scholar 

  93. Unger EF, Thompson AM, Blank MJ, Temple R. Erythropoiesis-stimulating agents: time for a reevaluation. N Engl J Med. 2010;362:189–92.

    Article  PubMed  CAS  Google Scholar 

  94. Skali H, Parving HH, Parfrey PS et al on behalf of the TREAT Investigators. Stroke in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia treated with darbepoetin alfa: the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT) experience. Circulation 2011;Nov 21. [Epub ahead of print].

  95. McMurray JJ, Anand IS, Diaz R, et al. Design of the Reduction of Events with Darbepoetin alfa in Heart Failure (RED-HF): a Phase III, anaemia correction, morbidity-mortality trial. Eur J Heart Fail. 2009;11:795–801.

    Article  PubMed  CAS  Google Scholar 

  96. Van Wyck DB, Roppolo M, Martinez CO, et al. A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with non-dialysis dependent CKD. Kidney Int. 2005;68:2846–56.

    Article  PubMed  Google Scholar 

  97. Rozen-Zvi B, Gafter-Gvili A, Paul M, et al. Intravenous versus oral iron supplementation for the treatment of anemia in CKD: Systematic review and meta-analysis. Am J Kidney Dis. 2008;52:897–906.

    Article  PubMed  CAS  Google Scholar 

  98. Macdougall IC. Iron supplementation in the non-dialysis chronic kidney disease (ND-CKD) patient: oral or intravenous? Curr Med Res Opin. 2010;26:473–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald S. Silverberg MD, FRCP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silverberg, D.S., Schwartz, D. The Role of Iron, Omega-3 Fatty Acids, and Vitamins in Heart Failure. Curr Treat Options Cardio Med 14, 328–341 (2012). https://doi.org/10.1007/s11936-012-0188-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-012-0188-3

Keywords

Navigation