Skip to main content

Advertisement

Log in

Selecting the Best Noninvasive Imaging Test to Guide Treatment After an Inconclusive Exercise Test

  • Coronary Artery Disease (PH Stone, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The first step towards approaching a patient with an inconclusive stress test is to identify the initial reason why a stress test was ordered and examine what factors led to inconclusive test results. Next, it is important to ask whether the patient will benefit from further testing, as not all patients with inconclusive test results require additional testing. In patients who are at low-to-intermediate risk, it may be useful to perform coronary CT angiography (CTA) to exclude the presence of obstructive coronary atherosclerosis. Among individuals with no prior history of coronary artery disease, a possible advantage of CTA is that if subclinical atherosclerosis is identified, intensification of lifestyle interventions, and often pharmacotherapy, should be advocated. On the other hand, in high-risk patients or individuals that already have coronary artery disease, the primary objective is to quantify the presence and magnitude of ischemia in order to define the potential role of coronary revascularization procedures. This can be achieved by myocardial perfusion imaging using nuclear imaging or cardiac MRI. Alternatively, a functional evaluation to identify stress-induced wall motion abnormalities using stress echocardiography or MRI can be obtained. In selecting which test to obtain, it is important to understand the strengths and limitations of different imaging tests and to consider patient factors (e.g., body habitus) that may influence the accuracy of various tests. In addition, physicians should consider whether there are any other clinical questions that require imaging. For instance, cardiac MRI may be used to evaluate for infiltrative myocardial disease or pericardial disease whereas cardiac CT can evaluate for lung pathology or diseases of the aorta. Finally, any decision regarding what type of additional testing to obtain should also be based on knowing the local expertise and availability of various testing options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Detrano R, Gianrossi R, Froelicher V. The diagnostic accuracy of the exercise electrocardiogram: a meta-analysis of 22 years of research. Prog Cardiovasc Dis. 1989;32:173–206.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40:1531–40.

    Article  PubMed  Google Scholar 

  3. Abrams J. Clinical practice. Chronic stable angina. N Engl J Med. 2005;352:2524–33.

    Article  PubMed  CAS  Google Scholar 

  4. Fletcher GF, Balady GJ, Amsterdam EA, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.

    Article  PubMed  CAS  Google Scholar 

  5. Mark DB, Lauer MS. Exercise capacity: the prognostic variable that doesn’t get enough respect. Circulation. 2003;108:1534–6.

    Article  PubMed  Google Scholar 

  6. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793–801.

    Article  PubMed  Google Scholar 

  7. Weiner DA, Ryan TJ, McCabe CH, et al. The role of exercise testing in identifying patients with improved survival after coronary artery bypass surgery. J Am Coll Cardiol. 1986;8:741–8.

    Article  PubMed  CAS  Google Scholar 

  8. Weiner DA, Ryan TJ, Parsons L, et al. Long-term prognostic value of exercise testing in men and women from the Coronary Artery Surgery Study (CASS) registry. Am J Cardiol. 1995;75:865–70.

    Article  PubMed  CAS  Google Scholar 

  9. Weiner DA, Ryan TJ, McCabe CH, et al. Prognostic importance of a clinical profile and exercise test in medically treated patients with coronary artery disease. J Am Coll Cardiol. 1984;3:772–9.

    Article  PubMed  CAS  Google Scholar 

  10. Eagle KA, Berger PB, Calkins H, et al. ACC/AHA guideline update for perioperative cardiovascular evaluation for noncardiac surgery–-executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1996 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). Circulation. 2002;105:1257–67.

    PubMed  Google Scholar 

  11. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol. 1997;30:260–311.

    Article  PubMed  CAS  Google Scholar 

  12. Weiner DA, Ryan TJ, McCabe CH, et al. Exercise stress testing. Correlations among history of angina, ST-segment response and prevalence of coronary-artery disease in the Coronary Artery Surgery Study (CASS). N Engl J Med. 1979;301:230–5.

    Article  PubMed  CAS  Google Scholar 

  13. Miller TD, Roger VL, Milavetz JJ, et al. Assessment of the exercise electrocardiogram in women versus men using tomographic myocardial perfusion imaging as the reference standard. Am J Cardiol. 2001;87:868–73.

    Article  PubMed  CAS  Google Scholar 

  14. Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation. 2005;111:682–96.

    Article  PubMed  Google Scholar 

  15. Morise AP, Diamond GA. Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J. 1995;130:741–7.

    Article  PubMed  CAS  Google Scholar 

  16. Alexander KP, Shaw LJ, Shaw LK, DeLong ER, Mark DB, Peterson ED. Value of exercise treadmill testing in women. J Am Coll Cardiol. 1998;32:1657–64.

    Article  PubMed  CAS  Google Scholar 

  17. Lauer MS, Pashkow FJ, Snader CE, Harvey SA, Thomas JD, Marwick TH. Sex and diagnostic evaluation of possible coronary artery disease after exercise treadmill testing at one academic teaching center. Am Heart J. 1997;134:807–13.

    Article  PubMed  CAS  Google Scholar 

  18. Okin PM, Kligfield P. Gender-specific criteria and performance of the exercise electrocardiogram. Circulation. 1995;92:1209–16.

    PubMed  CAS  Google Scholar 

  19. Handberg E, Johnson BD, Arant CB, et al. Impaired coronary vascular reactivity and functional capacity in women: results from the NHLBI Women’s Ischemia Syndrome Evaluation (WISE) Study. J Am Coll Cardiol. 2006;47:S44–9.

    Article  PubMed  Google Scholar 

  20. Shaw LJ, Olson MB, Kip K, et al. The value of estimated functional capacity in estimating outcome: results from the NHBLI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study. J Am Coll Cardiol. 2006;47:S36–43.

    Article  PubMed  Google Scholar 

  21. Gulati M, Black HR, Shaw LJ, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353:468–75.

    Article  PubMed  CAS  Google Scholar 

  22. Shaw LJ, Vasey C, Sawada S, Rimmerman C, Marwick TH. Impact of gender on risk stratification by exercise and dobutamine stress echocardiography: long-term mortality in 4234 women and 6898 men. Eur Heart J. 2005;26:447–56.

    Article  PubMed  Google Scholar 

  23. Hypertension prevalence and the status of awareness, treatment, and control in the United States. Final report of the Subcommittee on Definition and Prevalence of the 1984 Joint National Committee. Hypertension 1985;7:457–68.

  24. Prisant LM, Frank MJ, Carr AA, von Dohlen TW, Abdulla AM. How can we diagnose coronary heart disease in hypertensive patients? Hypertension. 1987;10:467–72.

    PubMed  CAS  Google Scholar 

  25. Fragasso G, Lu C, Dabrowski P, Pagnotta P, Sheiban I, Chierchia SL. Comparison of stress/rest myocardial perfusion tomography, dipyridamole and dobutamine stress echocardiography for the detection of coronary disease in hypertensive patients with chest pain and positive exercise test. J Am Coll Cardiol. 1999;34:441–7.

    Article  PubMed  CAS  Google Scholar 

  26. Frohlich ED, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med. 1992;327:998–1008.

    Article  PubMed  CAS  Google Scholar 

  27. Higgins JP, Higgins JA. Electrocardiographic exercise stress testing: an update beyond the ST segment. Int J Cardiol. 2007;116:285–99.

    Article  PubMed  Google Scholar 

  28. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108:1772–8.

    Article  PubMed  Google Scholar 

  29. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  30. Smith Jr SC, Greenland P, Grundy SM. AHA Conference Proceedings. Prevention conference V: neyond secondary prevention: Identifying the high-risk patient for primary prevention: executive summary. American Heart Association. Circulation. 2000;101:111–6.

    PubMed  Google Scholar 

  31. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:e584–636.

    Article  PubMed  Google Scholar 

  32. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  33. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  34. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  PubMed  CAS  Google Scholar 

  35. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57:1237–47.

    Article  PubMed  Google Scholar 

  36. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122:e525–55.

    Article  PubMed  Google Scholar 

  37. Abidov A, Gallagher MJ, Chinnaiyan KM, Mehta LS, Wegner JH, Raff GL. Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J Nucl Cardiol. 2009;16:701–13.

    Article  PubMed  Google Scholar 

  38. Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol. 2010;55:957–65.

    Article  PubMed  Google Scholar 

  39. Chow BJ, Wells GA, Chen L, et al. Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol. 2010;55:1017–28.

    Article  PubMed  Google Scholar 

  40. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53:623–32.

    Article  PubMed  Google Scholar 

  41. Blankstein R, Murphy MK, Nasir K, et al. Perceived usefulness of cardiac computed tomography as assessed by referring physicians and its effect on patient management. Am J Cardiol. 2010;105:1246–53.

    Article  PubMed  Google Scholar 

  42. Blankstein R, Di Carli MF. Integration of coronary anatomy and myocardial perfusion imaging. Nat Rev Cardiol. 2010;7:226–36.

    Article  PubMed  Google Scholar 

  43. Tonino PA, De BB, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  PubMed  CAS  Google Scholar 

  44. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  PubMed  CAS  Google Scholar 

  45. Erbel R, Mohlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56:1397–406.

    Article  PubMed  Google Scholar 

  46. Polonsky TS, McClelland RL, Jorgensen NW, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303:1610–6.

    Article  PubMed  CAS  Google Scholar 

  47. Rozanski A, Gransar H, Shaw LJ, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol. 2011;57:1622–32.

    Article  PubMed  CAS  Google Scholar 

  48. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2:675–88.

    Article  PubMed  Google Scholar 

  49. Redberg RF. What is the prognostic value of a zero calcium score? J Am Coll Cardiol. 2010;55:635–6.

    Article  PubMed  Google Scholar 

  50. Blaha MJ, Blumenthal RS, Nasir K. Zero coronary calcium and Bayes’ theorem. J Am Coll Cardiol. 2010;56:611–2.

    Article  PubMed  Google Scholar 

  51. Blaha MJ, Blumenthal RS, Budoff MJ, Nasir K. Understanding the utility of zero coronary calcium as a prognostic test: a Bayesian approach. Circ Cardiovasc Qual Outcomes. 2011;4:253–6.

    Article  PubMed  Google Scholar 

  52. National Institute for Health and Clinical Excellence. Chest pain of recent onset. Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. London: NICE 2010.

  53. Purvis JA, Hughes SM. Could coronary artery calcium scores replace exercise stress testing? A DGH analysis. Br. J Cardiol. 2011;18:120–3.

    Google Scholar 

  54. Wong ND, Detrano RC, Diamond G, et al. Does coronary artery screening by electron beam computed tomography motivate potentially beneficial lifestyle behaviors? Am J Cardiol. 1996;78:1220–3.

    Article  PubMed  CAS  Google Scholar 

  55. Blankstein R, Dorbala S. Adding calcium scoring to myocardial perfusion imaging: does it alter physicians’ therapeutic decision making? J Nucl Cardiol. 2010;17:168–71.

    Article  PubMed  Google Scholar 

  56. Bybee KA, Lee J, Markiewicz R, et al. Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial perfusion stress imaging. J Nucl Cardiol. 2010;17:188–96.

    Article  PubMed  Google Scholar 

  57. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  58. Shaw LJ, Peterson ED, Shaw LK, et al. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation. 1998;98:1622–30.

    PubMed  CAS  Google Scholar 

  59. Kwok JM, Miller TD, Hodge DO, Gibbons RJ. Prognostic value of the Duke treadmill score in the elderly. J Am Coll Cardiol. 2002;39:1475–81.

    Article  PubMed  Google Scholar 

  60. Mark DB, Shaw L, Harrell Jr FE, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med. 1991;325:849–53.

    Article  PubMed  CAS  Google Scholar 

  61. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    PubMed  CAS  Google Scholar 

  62. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48:349–58.

    PubMed  Google Scholar 

  63. Lertsburapa K, Ahlberg AW, Bateman TM, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15:745–53.

    PubMed  Google Scholar 

  64. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol. 1997;80:865–70.

    Article  PubMed  CAS  Google Scholar 

  65. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation. 1995;91:54–65.

    PubMed  CAS  Google Scholar 

  66. Pitkanen OP, Raitakari OT, Niinikoski H, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol. 1996;28:1705–11.

    Article  PubMed  CAS  Google Scholar 

  67. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15:1032–42.

    Article  PubMed  CAS  Google Scholar 

  68. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med. 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  69. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  70. Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007;20:1021–41.

    Article  PubMed  Google Scholar 

  71. Sawada SG, Segar DS, Ryan T, et al. Echocardiographic detection of coronary artery disease during dobutamine infusion. Circulation. 1991;83:1605–14.

    PubMed  CAS  Google Scholar 

  72. Segar DS, Brown SE, Sawada SG, Ryan T, Feigenbaum H. Dobutamine stress echocardiography: correlation with coronary lesion severity as determined by quantitative angiography. J Am Coll Cardiol. 1992;19:1197–202.

    Article  PubMed  CAS  Google Scholar 

  73. Marwick T, Willemart B, D’Hondt AM, et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation. 1993;87:345–54.

    PubMed  CAS  Google Scholar 

  74. Bonow RO. Diagnosis and risk stratification in coronary artery disease: nuclear cardiology versus stress echocardiography. J Nucl Cardiol. 1997;4:S172–8.

    Article  PubMed  CAS  Google Scholar 

  75. Kisacik HL, Ozdemir K, Altinyay E, et al. Comparison of exercise stress testing with simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computerized tomography for diagnosis of coronary artery disease. Eur Heart J. 1996;17:113–9.

    PubMed  CAS  Google Scholar 

  76. Forster T, McNeill AJ, Salustri A, et al. Simultaneous dobutamine stress echocardiography and technetium-99m isonitrile single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 1993;21:1591–6.

    Article  PubMed  CAS  Google Scholar 

  77. Douglas PS, Khandheria B, Stainback RF, et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. J Am Coll Cardiol. 2008;51:1127–47.

    Article  PubMed  Google Scholar 

  78. Bonow RO, Carabello BA, Chatterjee K, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2006;48:e1–148.

    Article  PubMed  Google Scholar 

  79. Lancellotti P, Lebrun F, Pierard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42:1921–8.

    Article  PubMed  Google Scholar 

  80. Geleijnse ML, Salustri A, Marwick TH, Fioretti PM. Should the diagnosis of coronary artery disease be based on the evaluation of myocardial function or perfusion? Eur Heart J. 1997;18(Suppl D):D68–77.

    PubMed  Google Scholar 

  81. Jahnke C, Nagel E, Gebker R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769–76.

    Article  PubMed  Google Scholar 

  82. Strach K, Meyer C, Schild H, Sommer T. Cardiac stress MR imaging with dobutamine. Eur Radiol. 2006;16:2728–38.

    Article  PubMed  CAS  Google Scholar 

  83. Wahl A, Paetsch I, Gollesch A, et al. Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J. 2004;25:1230–6.

    Article  PubMed  Google Scholar 

  84. Di CE, Battisti S, Riva A, et al. Parallel imaging and dobutamine stress magnetic resonance imaging in patients with atypical chest pain or equivocal ECG not suitable for stress echocardiography. Radiol Med. 2009;114:216–28.

    Article  Google Scholar 

  85. Schwitter J, Wacker CM, van Rossum AC, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9.

    Article  PubMed  Google Scholar 

  86. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99:763–70.

    PubMed  CAS  Google Scholar 

  87. Fleg JL, Pina IL, Balady GJ, et al. Assessment of functional capacity in clinical and research applications: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation. 2000;102:1591–7.

    PubMed  CAS  Google Scholar 

  88. Smits P, Corstens FH, Aengevaeren WR, Wackers FJ, Thien T. False-negative dipyridamole-thallium-201 myocardial imaging after caffeine infusion. J Nucl Med. 1991;32:1538–41.

    PubMed  CAS  Google Scholar 

  89. O’Keefe Jr JH, Bateman TM, Barnhart CS. Adenosine thallium-201 is superior to exercise thallium-201 for detecting coronary artery disease in patients with left bundle branch block. J Am Coll Cardiol. 1993;21:1332–8.

    Article  PubMed  Google Scholar 

  90. DePuey EG, Guertler-Krawczynska E, Robbins WL. Thallium-201 SPECT in coronary artery disease patients with left bundle branch block. J Nucl Med. 1988;29:1479–85.

    PubMed  CAS  Google Scholar 

  91. DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med. 1989;30:441–9.

    PubMed  CAS  Google Scholar 

  92. Elhendy A, van Domburg RT, Bax JJ, et al. Dobutamine-atropine stress myocardial perfusion SPECT imaging in the diagnosis of graft stenosis after coronary artery bypass grafting. J Nucl Cardiol. 1998;5:491–7.

    Article  PubMed  CAS  Google Scholar 

  93. Fazel R, Shaw LJ. Radiation exposure from radionuclide myocardial perfusion imaging: Concerns and solutions. J Nucl Cardiol. 2011. This article provides an overview of the risks and benefits of nuclear MPI and offers an excellent discussion on radiation related to nuclear cardiology imaging. This article presents a useful approach to informed clinical decision-making using the risk-benefit ratio of testing.

  94. Hendel RC, Berman DS, Di Carli MF, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009;53:2201–29.

    Article  PubMed  Google Scholar 

  95. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. A report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group. J Am Coll Radiol. 2006;3:751–71.

  96. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116:1290–305.

    Article  PubMed  Google Scholar 

  97. Hesse B, Tagil K, Cuocolo A, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging. 2005;32:855–97.

    Article  PubMed  CAS  Google Scholar 

  98. Conversion coefficients for use in radiological protection against external radiation. Adopted by the ICRP and ICRU in September 1995. Ann ICRP 1996;26:1–205.

    Google Scholar 

  99. Senthamizhchelvan S, Bravo PE, Lodge MA, Merrill J, Bengel FM, Sgouros G. Radiation dosimetry of 82Rb in humans under pharmacologic stress. J Nucl Med. 2011;52:485–91.

    Article  PubMed  Google Scholar 

  100. Senthamizhchelvan S, Bravo PE, Esaias C, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med. 2010;51:1592–9.

    Article  PubMed  Google Scholar 

  101. Stabin MG. Radiopharmaceuticals for nuclear cardiology: radiation dosimetry, uncertainties, and risk. J Nucl Med. 2008;49:1555–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Blankstein MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, A.S., Blankstein, R. Selecting the Best Noninvasive Imaging Test to Guide Treatment After an Inconclusive Exercise Test. Curr Treat Options Cardio Med 14, 8–23 (2012). https://doi.org/10.1007/s11936-011-0161-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-011-0161-6

Keywords

Navigation