Skip to main content
Log in

Mechanical Circulatory Support for Advanced Heart Failure

  • Valvular, Myocardial, Pericardial, and Cardiopulmonary Diseases
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Both acute and chronic systolic heart failure can progress to an advanced phase, resulting in stage D heart failure and even cardiogenic shock. Despite significant progress in the treatment of systolic heart failure using medical and device therapies, this terminal phase continues to be prevalent and associated with unacceptably high morbidity and mortality. Given the inability to offer cardiac transplantation to the majority of those presenting with advanced heart failure, alternative strategies for cardiac replacement therapy are often required. Although there has been interest in using mechanical devices to support the circulation since the advent of cardiopulmonary bypass, it is only in the past 20 years that ventricular assist devices (VAD) have become viable options for therapy. Indeed, we are now entering an era where circulatory assist devices are being used not only to temporarily support patients with post-cardiotomy shock, but also as a long-term treatment in ambulatory heart failure patients. Furthermore, we are now able to utilize data from multicenter trials and registries to guide treatment decisions. These data have clearly shown that VADs improve survival and quality of life in patients with advanced heart failure when implanted as a temporary measure (bridge to recovery and bridge to transplant) or as long-term support (destination therapy). However, with a growing heart failure population there is much work to be done to improve VAD technology, patient selection, post-implantation management, and to define the optimal role for assist devices in the management of systolic heart failure. We are also in the nascent stages of fully understanding the impact of mechanical support on the failing myocardium, and developing research methodologies to study novel therapies in tandem with VADs to facilitate ventricular recovery. These important questions are currently being addressed in ongoing clinical trials, registry analyses, and translational research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hershberger RE, Nauman D, Walker TL, et al.: Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Card Fail 2003, 9:180–187.

    Article  PubMed  Google Scholar 

  2. Rogers JG, Butler J, Lansman SL, et al.: Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol 2007, 50:741–747.

    Article  PubMed  Google Scholar 

  3. Rose EA, Gelijns AC, Moskowitz AJ, et al.: Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 2001, 345:1435–1443.

    Article  CAS  PubMed  Google Scholar 

  4. Jessup M, Brozena S: Heart failure. N Engl J Med 2003, 348:2007–2018.

    Article  PubMed  Google Scholar 

  5. Reynolds HR, Hochman JS: Cardiogenic shock: current concepts and improving outcomes. Circulation 2008, 117:686–697.

    Article  PubMed  Google Scholar 

  6. Hochman JS, Sleeper LA, White HD, et al.: One-year survival following early revascularization for cardiogenic shock. JAMA 2001, 285:190–192.

    Article  CAS  PubMed  Google Scholar 

  7. Hochman JS, Sleeper LA, Godfrey E, et al.: SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK: an international randomized trial of emergency PTCA/CABG-trial design. The SHOCK Trial Study Group. Am Heart J 1999, 137:313–321.

    Article  CAS  PubMed  Google Scholar 

  8. Katz JN, Stebbins AL, Alexander JH, et al.: Predictors of 30-day mortality in patients with refractory cardiogenic shock following acute myocardial infarction despite a patent infarct artery. Am Heart J 2009, 158:680–687.

    Article  PubMed  Google Scholar 

  9. Taylor DO, Stehlik J, Edwards LB, et al.: Registry of the International Society for Heart and Lung Transplantation: Twenty-sixth Official Adult Heart Transplant Report-2009. J Heart Lung Transplant 2009, 28:1007–1022.

    Article  PubMed  Google Scholar 

  10. Baughman KL, Jarcho JA: Bridge to life—cardiac mechanical support. N Engl J Med 2007, 357:846–849.

    Article  CAS  PubMed  Google Scholar 

  11. Chandra D, Kar B, Idelchik G, et al.: Usefulness of percutaneous left ventricular assist device as a bridge to recovery from myocarditis. Am J Cardiol 2007, 99:1755–1756.

    Article  PubMed  Google Scholar 

  12. Pages ON, Aubert S, Combes A, et al.: Paracorporeal pulsatile biventricular assist device versus extracorporal membrane oxygenation-extracorporal life support in adult fulminant myocarditis. J Thorac Cardiovasc Surg 2009, 137:194–197.

    Article  PubMed  Google Scholar 

  13. Maybaum S, Mancini D, Xydas S, et al.: Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 2007, 115:2497–2505.

    Article  PubMed  Google Scholar 

  14. Acker MA: Mechanical circulatory support for patients with acute-fulminant myocarditis. Ann Thorac Surg 2001, 71:S73–76. discussion S82–85.

    Article  CAS  PubMed  Google Scholar 

  15. Matthews JC, Koelling TM, Pagani FD, Aaronson KD: The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 2008, 51:2163–2172.

    Article  PubMed  Google Scholar 

  16. Lietz K, Miller LW: Patient selection for left-ventricular assist devices. Curr Opin Cardiol 2009, 24:246–251.

    Article  PubMed  Google Scholar 

  17. Trost JC, Hillis LD: Intra-aortic balloon counterpulsation. Am J Cardiol 2006, 97:1391–1398.

    Article  PubMed  Google Scholar 

  18. Stone GW, Ohman EM, Miller MF, et al.: Contemporary utilization and outcomes of intra-aortic balloon counterpulsation in acute myocardial infarction: the benchmark registry. J Am Coll Cardiol 2003, 41:1940–1945.

    Article  PubMed  Google Scholar 

  19. Lee MS, Makkar RR: Percutaneous left ventricular support devices. Cardiol Clin 2006, 24:265–275. vii.

    Article  PubMed  Google Scholar 

  20. Thiele H, Sick P, Boudriot E, et al.: Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2005, 26:1276–1283.

    Article  PubMed  Google Scholar 

  21. Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW: A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006, 152:469 e1–8.

    Article  PubMed  Google Scholar 

  22. Garatti A, Colombo T, Russo C, et al.: Left ventricular mechanical support with the Impella Recover left direct microaxial blood pump: a single-center experience. Artif Organs 2006, 30:523–528.

    Article  PubMed  Google Scholar 

  23. Reesink KD, Dekker AL, Van Ommen V, et al.: Miniature intracardiac assist device provides more effective cardiac unloading and circulatory support during severe left heart failure than intraaortic balloon pumping. Chest 2004, 126:896–902.

    Article  PubMed  Google Scholar 

  24. Garatti A, Colombo T, Russo C, et al.: Different applications for left ventricular mechanical support with the Impella Recover 100 microaxial blood pump. J Heart Lung Transplant 2005, 24:481–485.

    Article  PubMed  Google Scholar 

  25. Bermudez CA, Adusumilli PS, McCurry KR, et al.: Extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation: long-term survival. Ann Thorac Surg 2009, 87:854–860.

    Article  PubMed  Google Scholar 

  26. John R, Liao K, Lietz K, et al.: Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg 2007, 134:351–358.

    Article  PubMed  Google Scholar 

  27. De Robertis F, Birks EJ, Rogers P, et al.: Clinical performance with the Levitronix Centrimag short-term ventricular assist device. J Heart Lung Transplant 2006, 25:181–186.

    Article  PubMed  Google Scholar 

  28. Stevenson LW, Rose EA: Left ventricular assist devices: bridges to transplantation, recovery, and destination for whom? Circulation 2003, 108:3059–3063.

    Article  PubMed  Google Scholar 

  29. Sandner SE, Wieselthaler G, Zuckermann A, et al.: Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. Circulation 2001, 104:I171–176.

    Article  CAS  PubMed  Google Scholar 

  30. Lietz K, Miller LW: Improved survival of patients with end-stage heart failure listed for heart transplantation: analysis of organ procurement and transplantation network/U.S. United Network of Organ Sharing data, 1990 to 2005. J Am Coll Cardiol 2007, 50:1282–1290.

    Article  PubMed  Google Scholar 

  31. Johnson MR, Meyer KH, Haft J, et al.: Heart transplantation in the United States, 1999–2008. Am J Transplant 2010, 10:1035–1046.

    Article  CAS  PubMed  Google Scholar 

  32. Miller LW, Lietz K: Candidate selection for long-term left ventricular assist device therapy for refractory heart failure. J Heart Lung Transplant 2006, 25:756–764.

    Article  PubMed  Google Scholar 

  33. Lietz K, Long JW, Kfoury AG, et al.: Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 2007, 116:497–505.

    Article  PubMed  Google Scholar 

  34. Holman WL, Kormos RL, Naftel DC, et al.: Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. J Heart Lung Transplant 2009, 28:44–50.

    Article  PubMed  Google Scholar 

  35. Morgan JA, Stewart AS, Lee BJ, et al.: Role of the Abiomed BVS 5000 device for short-term support and bridge to transplantation. ASAIO J 2004, 50:360–363.

    PubMed  Google Scholar 

  36. Farrar DJ: The Thoratec ventricular assist device: a paracorporeal pump for treating acute and chronic heart failure. Semin Thorac Cardiovasc Surg 2000, 12:243–250.

    CAS  PubMed  Google Scholar 

  37. Frazier OH, Rose EA, Oz MC, et al.: Multicenter clinical evaluation of the Heartmate; vented electric left ventricular assist system in patients awaiting heart transplantation. J Heart Lung Transplant 2001, 20:201–202.

    Google Scholar 

  38. Deng MC, Edwards LB, Hertz MI, et al.: Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report—2005. J Heart Lung Transplant 2005, 24:1182–1187.

    Article  PubMed  Google Scholar 

  39. Miller LW, Pagani FD, Russell SD, et al.: Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 2007, 357:885–896.

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein DJ: Worldwide experience with the MicroMed DeBakey Ventricular Assist Device as a bridge to transplantation. Circulation 2003, 108(Suppl 1):II272–277.

    PubMed  Google Scholar 

  41. Pagani FD, Miller LW, Russell SD, et al.: Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 2009, 54:312–321.

    Article  PubMed  Google Scholar 

  42. Feller ED, Sorensen EN, Haddad M, et al.: Clinical outcomes are similar in pulsatile and nonpulsatile left ventricular assist device recipients. Ann Thorac Surg 2007, 83:1082–1088.

    Article  PubMed  Google Scholar 

  43. Frazier OH, Myers TJ, Westaby S, Gregoric ID: Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann Surg 2003, 237:631–636. discussion 636–637.

    Article  CAS  PubMed  Google Scholar 

  44. Kirklin JK, Naftel DC, Stevenson LW, et al.: INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 2008, 27:1065–1072.

    Article  PubMed  Google Scholar 

  45. Kirklin JK, Naftel DC, Kormos RL, et al.: Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 2010, 29:1–10.

    Article  PubMed  Google Scholar 

  46. Frazier OH, Rose EA, Macmanus Q, et al.: Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg 1992, 53:1080–1090.

    Article  CAS  PubMed  Google Scholar 

  47. Hernandez AF, Grab JD, Gammie JS, et al.: A decade of short-term outcomes in post cardiac surgery ventricular assist device implantation: data from the Society of Thoracic Surgeons’ National Cardiac Database. Circulation 2007, 116:606–612.

    Article  PubMed  Google Scholar 

  48. Hernandez AF, Shea AM, Milano CA, et al.: Long-term outcomes and costs of ventricular assist devices among Medicare beneficiaries. JAMA 2008, 300:2398–2406.

    Article  CAS  PubMed  Google Scholar 

  49. John R, Pagani FD, Naka Y, et al.: Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg 2010 (in press).

  50. Pal JD, Piacentino V, Cuevas AD, et al.: Impact of left ventricular assist device bridging on posttransplant outcomes. Ann Thorac Surg 2009, 88:1457–1461. discussion 1461.

    Article  PubMed  Google Scholar 

  51. Rogers JG, Aaronson KD, Boyle AJ, et al.: Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 2010, 55:1826–1834.

    Article  PubMed  Google Scholar 

  52. Larose JA, Tamez D, Ashenuga M, Reyes C: Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J 2010, 56:285–289.

    PubMed  Google Scholar 

  53. Tuzun E, Roberts K, Cohn WE, et al.: In vivo evaluation of the HeartWare centrifugal ventricular assist device. Tex Heart Inst J 2007, 34:406–411.

    PubMed  Google Scholar 

  54. Boyle Jr A, Moazami N, et al.: U.S. experience with a novel centrifugal LVAD in bridge to transplant patients. J Heart Lung Transplant 2009, 28:80–81.

    Article  Google Scholar 

  55. Morshuis M, El-Banayosy A, Arusoglu L, et al.: European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system. Eur J Cardiothorac Surg 2009, 35:1020–1027. discussion 1027–1028.

    Article  PubMed  Google Scholar 

  56. Alba AC, Rao V, Ivanov J, et al.: Usefulness of the INTERMACS scale to predict outcomes after mechanical assist device implantation. J Heart Lung Transplant 2009, 28:827–833.

    Article  PubMed  Google Scholar 

  57. Frazier OH, Delgado RM: Mechanical circulatory support for advanced heart failure: where does it stand in 2003? Circulation 2003, 108:3064–3068.

    Article  CAS  PubMed  Google Scholar 

  58. Slaughter MS, Rogers JG, Milano CA, et al.: Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009, 361:2241–2251.

    Article  CAS  PubMed  Google Scholar 

  59. Fang JC: Rise of the machines—left ventricular assist devices as permanent therapy for advanced heart failure. N Engl J Med 2009, 361:2282–2285.

    Article  CAS  PubMed  Google Scholar 

  60. Russell SD, Rogers JG, Milano CA, et al.: Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 2009, 120:2352–2357.

    Article  PubMed  Google Scholar 

  61. Radovancevic B, Vrtovec B, de Kort E, et al.: End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transplant 2007, 26:815–818.

    Article  PubMed  Google Scholar 

  62. Stevenson LW, Hellkamp AS, Leier CV, et al.: Changing preferences for survival after hospitalization with advanced heart failure. J Am Coll Cardiol 2008, 52:1702–1708.

    Article  PubMed  Google Scholar 

  63. Lewis EF, Johnson PA, Johnson W, et al.: Preferences for quality of life or survival expressed by patients with heart failure. J Heart Lung Transplant 2001, 20:1016–1024.

    Article  CAS  PubMed  Google Scholar 

  64. Lindenfeld J, Feldman AM, Saxon L, et al.: Effects of cardiac resynchronization therapy with or without a defibrillator on survival and hospitalizations in patients with New York Heart Association class IV heart failure. Circulation 2007, 115:204–212.

    Article  PubMed  Google Scholar 

  65. Daneshmand MA, Rajagopal K, Lima B, et al.: Left ventricular assist device destination therapy versus extended criteria cardiac transplant. Ann Thorac Surg 2010, 89:1205–1209. discussion 1210.

    Article  PubMed  Google Scholar 

  66. Uriel N, Pak SW, Jorde UP, et al.: Acquired von Willebrand Syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 2010 Jun 25 [Epub ahead of print].

  67. Stern DR, Kazam J, Edwards P, et al.: Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg 2010, 25:352–356.

    Article  PubMed  Google Scholar 

  68. Klovaite J, Gustafsson F, Mortensen SA, et al.: Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol 2009, 53:2162–2167.

    Article  CAS  PubMed  Google Scholar 

  69. Crow S, John R, Boyle A, et al.: Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 2009, 137:208–215.

    Article  CAS  PubMed  Google Scholar 

  70. Mancini DM, Beniaminovitz A, Levin H, et al.: Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 1998, 98:2383–2389.

    CAS  PubMed  Google Scholar 

  71. Birks EJ, Tansley PD, Hardy J, et al.: Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 2006, 355:1873–1884.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Joseph G. Rogers is a consultant for Thoratec.

Chetan B. Patel and Kevin M. Alexander report no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph G. Rogers MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, C.B., Alexander, K.M. & Rogers, J.G. Mechanical Circulatory Support for Advanced Heart Failure. Curr Treat Options Cardio Med 12, 549–565 (2010). https://doi.org/10.1007/s11936-010-0093-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-010-0093-6

Keywords

Navigation