Skip to main content

Advertisement

Log in

Use of Genetics in the Clinical Evaluation and Management of Heart Failure

  • Valvular, Myocardial, Pericardial, and Cardiopulmonary Diseases
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Inherited forms of cardiomyopathy are common causes of heart failure. Applications of genetics in the evaluation and management of heart failure include the determination of inheritance patterns within families with cardiomyopathy, the evaluation of affected patients for syndromic features, the determination of people within families who are at risk of heart failure, and the identification of responsible gene mutations. Family planning may also be assisted by determination of a clear mutation that predisposes to heart failure. Genetic counseling is critical, and it should accompany the use of genetic testing in cardiovascular diseases. With the rapid pace of growth in technology that is used to determine DNA sequence, costs have declined and clinical application of genetic testing has expanded. This is particularly relevant for heart failure, because each of the familial forms of cardiomyopathy may be caused by a mutation in many different genes. Most families share a unique gene mutation, and appropriate interpretation of novel DNA variants is essential for proper use. The evaluation of risk of arrhythmia in familial forms of heart failure may benefit from genetic testing, as mutations in the genes encoding lamin A/C, desmin, and cardiac troponin T are associated with increased risk of sudden cardiac death. Because of its complexity and the rapid rate of change in available genetic testing options, the genetic evaluation of heart failure is best suited to tertiary referral centers with specific expertise in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Judge DP, Johnson NM: Genetic evaluation of familial cardiomyopathy. J Cardiovasc Trans Res 2008, 2:144–154.

    Article  Google Scholar 

  2. Hershberger RE, Cowan J, Morales A, Siegfried JD: Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2009, 2:253–261.

    Article  PubMed  Google Scholar 

  3. Morita H, Seidman J, Seidman CE: Genetic causes of human heart failure. J Clin Invest 2005, 115:518–526.

    CAS  PubMed  Google Scholar 

  4. Fowler SJ, Napolitano C, Priori SG: The genetics of cardiomyopathy: genotyping and genetic counseling. Curr Treat Options Cardiovasc Med 2009, 11:433–446.

    Article  PubMed  Google Scholar 

  5. Kaski JP, Syrris P, Burch M, et al.: Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart 2008, 94:1478–1484.

    Article  CAS  PubMed  Google Scholar 

  6. Awad MM, Calkins H, Judge DP: Mechanisms of Disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med 2008, 5:258–267.

    Article  CAS  PubMed  Google Scholar 

  7. Finsterer J: Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol 2009, 30:659–681.

    Article  PubMed  Google Scholar 

  8. Mestroni L, Maisch B, McKenna WJ, et al.: Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J 1999, 20:93–102.

    Article  CAS  PubMed  Google Scholar 

  9. Michels VV, Moll PP, Miller FA, et al.: The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992, 326:77–82.

    Article  CAS  PubMed  Google Scholar 

  10. Grunig E, Tasman JA, Kucherer H, et al.: Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998, 31:186–194.

    Article  CAS  PubMed  Google Scholar 

  11. Baig MK, Goldman JH, Caforio AL, et al.: Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 1998, 31:195–201.

    Article  CAS  PubMed  Google Scholar 

  12. Cheitlin MD, Armstrong WF, Aurigemma GP, et al.: ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2003, 108:1146–1162.

    Article  PubMed  Google Scholar 

  13. Hershberger RE, Lindenfeld J, Mestroni L, et al.: Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J Card Fail 2009, 15:83–97. This article provides additional levels of evidence for recommendations and guidelines.

    Google Scholar 

  14. Offit K, Groeger E, Turner S, et al.: The “duty to warn” a patient’s family members about hereditary disease risks. JAMA 2004, 292:1469–1473.

    Article  CAS  PubMed  Google Scholar 

  15. Judge DP: Use of genetics in the clinical evaluation of cardiomyopathy. JAMA 2009, 302:2471–2476.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz PJ: Cascades or waterfalls, the cataracts of genetic screening are being opened on clinical cardiology. J Am Coll Cardiol 2010, 55:2577–2579. This editorial provides one of the strongest recommendations for physicians to use clinical genetic testing for the evaluation of Long QT, calling the use of genetics an essential component of good medical care.

    Google Scholar 

  17. Cowan J, Morales A, Dagua J, Hershberger RE: Genetic testing and genetic counseling in cardiovascular genetic medicine: overview and preliminary recommendations. Congest Heart Fail 2008, 14:97–105.

    Article  PubMed  Google Scholar 

  18. Zimmerman RS, Cox S, Lakdawala NK, et al.: A novel custom resequencing array for dilated cardiomyopathy. Genet Med 2010, 12:268–278.

    Article  PubMed  Google Scholar 

  19. Lamberts SW, Uitterlinden AG: Genetic testing in clinical practice. Annu Rev Med 2009, 60:431–442.

    Article  CAS  PubMed  Google Scholar 

  20. Wordsworth S, Leal J, Blair E, et al.: DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J 2010, 31:926–935.

    Article  PubMed  Google Scholar 

  21. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigators. N Engl J Med 1992, 327:685–691.

  22. Duboc D, Meune C, Lerebours G, et al.: Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005, 45:855–857.

    Article  CAS  PubMed  Google Scholar 

  23. Duboc D, Meune C, Pierre B, et al.: Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart J 2007, 154:596–602.

    Article  CAS  PubMed  Google Scholar 

  24. Colucci WS, Kolias TJ, Adams KF, et al.: Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction: the REversal of VEntricular Remodeling with Toprol-XL (REVERT) trial. Circulation 2007, 116:49–56.

    Article  CAS  PubMed  Google Scholar 

  25. Chimenti C, Pieroni M, Morgante E, et al.: Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 2004, 110:1047–1053.

    Article  CAS  PubMed  Google Scholar 

  26. Linthorst GE, Bouwman MG, Wijburg FA, et al.: Screening for Fabry disease in high-risk populations: a systematic review. J Med Genet 2010, 47:217–222.

    Article  CAS  PubMed  Google Scholar 

  27. Eng CM, Guffon N, Wilcox WR, et al.: Safety and efficacy of recombinant human alpha-galactosidase a replacement therapy in Fabry’s disease. N Engl J Med 2001, 345:9–16.

    Article  CAS  PubMed  Google Scholar 

  28. Epstein AE, DiMarco JP, Ellenbogen KA, et al.: ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Circulation 2008, 117:e350–408. This article provides levels of evidence supporting recommendations for devices, including the consideration of arrhythmia in genetic forms of heart disease.

    Google Scholar 

  29. Kadish A, Dyer A, Daubert JP, et al.: Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 2004, 350:2151–2158.

    Article  CAS  PubMed  Google Scholar 

  30. Becane HM, Bonne G, Varnous S, et al.: High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin Electrophysiol 2000, 23:1661–1666.

    Article  CAS  PubMed  Google Scholar 

  31. Taylor MR, Fain PR, Sinagra G, et al.: Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003, 41:771–780.

    Article  CAS  PubMed  Google Scholar 

  32. Meune C, Van Berlo JH, Anselme F, et al.: Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med 2006, 354:209–210.

    Article  CAS  PubMed  Google Scholar 

  33. van Tintelen JP, Van Gelder IC, Asimaki A, et al.: Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 2009, 6:1574–1583.

    Article  PubMed  Google Scholar 

  34. Maron BJ, Spirito P, Shen WK, et al.: Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 2007, 298:405–412.

    Article  CAS  PubMed  Google Scholar 

  35. Charron P, Dubourg O, Desnos M, et al.: Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein c gene. Circulation 1998, 97:2230–2236.

    CAS  PubMed  Google Scholar 

  36. Morita H, Rehm HL, Menesses A, et al.: Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 2008, 358:1899–1908.

    Article  CAS  PubMed  Google Scholar 

  37. Hershberger RE, Norton N, Morales A, et al.: Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet 2010, 3:155–161.

    Article  CAS  PubMed  Google Scholar 

  38. Watkins H, McKenna WJ, Thierfelder L, et al.: Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995, 332:1058–1064.

    Article  CAS  PubMed  Google Scholar 

  39. Spirito P, Maron BJ: Relation between extent of left ventricular hypertrophy and occurrence of sudden cardiac death in hypertrophic cardiomyopathy. J Am Coll Cardiol 1990, 15:1521–1526.

    Article  CAS  PubMed  Google Scholar 

  40. Riegert-Johnson DL, Korf BR, Alford RL, et al.: Outline of a medical genetics curriculum for internal medicine residency training programs. Genet Med 2004, 6:543–547.

    Article  PubMed  Google Scholar 

  41. McKusick VA: On lumpers and splitters, or the nosology of genetic disease. Perspect Biol Med 1969, 12:298–312.

    CAS  PubMed  Google Scholar 

  42. Klaassen S, Probst S, Oechslin E, et al.: Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 2008, 117:2893–2901.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts JD, Veinot JP, Rutberg J, Gollob MH: Inherited cardiomyopathies mimicking ARVC. Cardiovasc Pathol 2009 Jun 3 [Epub ahead of print; doi:10.1016/j.carpath.2009.06.003].

  44. Kesselheim AS, Mello MM: Gene patenting—is the pendulum swinging back? N Engl J Med 2010, 362:1855–1858.

    Article  CAS  PubMed  Google Scholar 

  45. Patton SJ, Wallace AJ, Elles R: Benchmark for evaluating the quality of DNA sequencing: proposal from an international external quality assessment scheme. Clin Chem 2006, 52:728–736.

    Article  CAS  PubMed  Google Scholar 

  46. Wertz DC, Fanos JH, Reilly PR: Genetic testing for children and adolescents. Who decides? JAMA 1994, 272:875–881.

    Article  CAS  PubMed  Google Scholar 

  47. Meulenkamp TM, Tibben A, Mollema ED, et al.: Predictive genetic testing for cardiovascular diseases: impact on carrier children. Am J Med Genet A 2008, 146A:3136–3146.

    Article  PubMed  Google Scholar 

  48. Borry P, Fryns J-P, Schotsmans P, Dierickx K: Carrier testing in minors: a systematic review of guidelines and position papers. Eur J Hum Genet 2006, 14:133–138.

    Article  PubMed  Google Scholar 

  49. Tarini BA, Singer D, Clark SJ, Davis MM: Parents’ interest in predictive genetic testing for their children when a disease has no treatment. Pediatrics 2009 (in press).

  50. Venter JC, Adams MD, Myers EW, et al.: The sequence of the human genome. Science 2001, 291:1304–1351.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Wang W, Li R, et al.: The diploid genome sequence of an Asian individual. Nature 2008, 456:60–65.

    Article  CAS  PubMed  Google Scholar 

  52. Lupski JR, Reid JG, Gonzaga-Jauregui C, et al.: Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010, 362:1181–1191.

    Article  CAS  PubMed  Google Scholar 

  53. Lifton RP: Individual genomes on the horizon. N Engl J Med 2010, 362:1235–1236.

    Article  CAS  PubMed  Google Scholar 

  54. Ashley EA, Butte AJ, Wheeler MT, et al.: Clinical assessment incorporating a personal genome. Lancet 2010, 375:1525–1535. This article demonstrates the incorporation of whole genome DNA analysis into clinical practice.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Judge MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judge, D.P., Rouf, R. Use of Genetics in the Clinical Evaluation and Management of Heart Failure. Curr Treat Options Cardio Med 12, 566–577 (2010). https://doi.org/10.1007/s11936-010-0092-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-010-0092-7

Keywords

Navigation