Skip to main content

Advertisement

Log in

Lymphotropic Nanoparticle-enhanced MRI in Prostate Cancer: Value and Therapeutic Potential

  • New Imaging Techniques (A Atala and A Rastinehad, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Nodal staging in prostate cancer is suboptimal both with respect to current imaging modalities and pelvic lymph node dissection, and thus other techniques are being explored. Lymphotropic nanoparticle-enhanced MRI, also called magnetic resonance lymphography (MRL), is a technique that has shown high sensitivity (65–92 %) and excellent specificity (93–98 %) in detecting prostate cancer lymph node metastases. This technique aids in the detection of metastases in non-enlarged small nodes. MRL has been useful in determining the location and pathways of spread in nodal chains. Knowledge of the location of lymph node involvement is important for decisions regarding appropriate therapeutic options, such as image-guided therapy.. A geographic miss in radiotherapy can be avoided with the use of MRL-guided focal therapy. This paper provides an overview of current literature, lessons learned, and new therapeutic options with nanoparticle-enhanced MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hövels A, Heesakkers R, Adang E, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin rad. 2008;63:387–95.

    Article  Google Scholar 

  2. Heesakkers R, Jager G, Hövels A, et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR Imaging. Radiology. 2009;251:408–14.

    Article  PubMed  Google Scholar 

  3. Joniau S, van den Bergh L, Lerut E, et al. Mapping of pelvic lymph node metastases in prostate cancer. Eur urol. 2013;63:450–8. In this article, lymphatic drainage and discrimination patterns of prostate cancer were presented. Standard PLND would have correctly staged the majority of lymph node-positive patients, but 13% of the positive lymph nodes would be missed..

    Article  PubMed  Google Scholar 

  4. Makarov D, Trock B, Humphreys E, et al. Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason Score (Partin tables) based on cases from 2000–2005. Urology. 2007;69:1095–101.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Roach III M, Marquez C, You H. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 1994;28:33–7.

    Article  PubMed  Google Scholar 

  6. Deserno W, Debats O, Rozema T, et al. Comparison of nodal risk formula and MR Lymphography for predicting lymph node involvement in prostate cancer. Int J Rad Oncol Biol Phys. 2011;81:8–15.

    Article  Google Scholar 

  7. Nguyen P, Chen M, Hoffman K, et al. Predicting the risk of pelvic node involvement among men with prostate cancer in the contemporary era. Int J Radiat Oncol Biol Phys. 2009;74:104–9.

    Article  PubMed  Google Scholar 

  8. Bellin MF, Beigelman C, Precetti-Morel S. Iron oxide-enhanced MR lymphography: initial experience. Eur J Rad. 2000;34:257–64.

    Article  CAS  Google Scholar 

  9. Fortuin A, Deserno W, Meijer H, et al. Value of PET/CT and MR Lymphography in treatment of prostate cancer patients with lymph node metastases. Int J Rad Oncol Biol Phys. 2012;84:712–8.

    Article  Google Scholar 

  10. Harisinghani MG, Saini S, Weissleder R, et al. Ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathological correlation. AJR. 1999;172:1347–51.

    Article  CAS  PubMed  Google Scholar 

  11. Harisinghani M, Barentsz J, Hahn P, et al. MR lymphangiography for detection of minimal nodal disease in patients with prostate cancer. Acad Radiol. 2002;9:s312–3.

    Article  PubMed  Google Scholar 

  12. Harisinghani M, Barentsz J, Hahn P, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  13. Deserno WMLLG, Harisinghani MG, Taupitz M, et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology. 2004;233:449–56.

    Article  PubMed  Google Scholar 

  14. Tabatabaei S, Harisinghani MG, McDougal WS. Regional lymph node staging using lymphotropic nanoparticle enhanced magnetic resonance imaging with ferumoxtran-10 in patients with penile cancer. J Urol. 2005;174:923–7.

    Article  PubMed  Google Scholar 

  15. Harisinghani MG, Saksena M, Ross RW, et al. A pilot study of lymphtrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology. 2005;66:1066–71.

    Article  PubMed  Google Scholar 

  16. Harisinghani MG, Saksena MA, Hahn PF, et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR. 2006;186:144–8.

    Article  PubMed  Google Scholar 

  17. Guimaraes AR, Tabatabei S, Dahl D, et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology. 2008;71:708–12.

    Article  PubMed  Google Scholar 

  18. Heesakkers R, Hovels A, Jager G, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 2008;9:850–6.

    Article  CAS  PubMed  Google Scholar 

  19. Thoeny H, Triantafyllou M, Birkhäuser F, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol. 2009;55:761–9.

    Article  PubMed  Google Scholar 

  20. Triantafyllou M, Studer U, Birkhäuser F, et al. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer. 2013;49:616–24.

    Article  CAS  PubMed  Google Scholar 

  21. Birkhäuser FD, Studer UE, Froehlich JM, et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol. 2013; in press. Most recent article on MRL, with the addition of a DWI sequence to the protocol, resulting in reduction of reading time.

  22. Wu L, Cao Y, Liao C, Huang J, Gao F. Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Rad. 2011;80:582–9.

    Article  Google Scholar 

  23. Fortuin AS, Meijer H, Thomson LC, Witjes JA, Barentsz JO. Ferumoxtran-10 (USPIO)-enhanced DWI-MRI for detection of metastases in normal-sized lymph nodes in patients with bladder and prostate cancer: do we enter the era after ePLND? Editorial. Eur Urol. 2013; in press.

  24. Fortuin A, Barentsz J. Comments on Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer. 2013;49:1789–90.

    Article  CAS  PubMed  Google Scholar 

  25. Evangelista L, Guttilla A, Zattoni F, et al. Utility of choline positron tomography/computed tomography for lymph node involvement identification in intermediate-to-high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63:1040–8.

    Article  PubMed  Google Scholar 

  26. Souvatzoglou M, Eiber M, Takei T, et al. Comparison of integrated whole-body [11C] choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging. 2013; Epub ahead of print.

  27. Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68GA]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.

    Article  CAS  PubMed  Google Scholar 

  28. Eder M, Schäfer M, Bauder-Wüst U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97.

    Article  CAS  PubMed  Google Scholar 

  29. Afshar-Oromieh A, Haberkorn U, Hadaschik B. PET/MRI with a 68Ga-PSMA ligand for the detection of prostate cancer. Eur J Nucl Med Mol Imaging. 2013; Epub ahead of print.

  30. Roethke M, Kuru TH, Afshar-Oromieh A, et al. Hybrid positron emission tomography-magnetic resonance imaging with gallium 68 prostate-specific membrane antigen tracer: a next step for imaging of recurrent prostate cancer-preliminary results. 2013; Epub ahead of print.

  31. Banerjee S, Pullambhatla M, Byun Y, et al. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem. 2010;53:5333–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann C. [68GA]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012; 39:1085–1086.

    Google Scholar 

  33. Meijer H, Fortuin A, van Lin E, et al. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol. 2013;106:59–63. MRL-based study presenting the distribution of lymph node metastases in primary prostate cancer patients. 53% of patients had a positive lymph node outside the standard radiation field.

    Article  PubMed  Google Scholar 

  34. Meijer H, Van Lin E, Debats O, et al. High occurrence of aberrant lymph node spread on magnetic resonance lymphography in prostate cancer patients with a biochemical recurrence after radical prostatectomy 2012. Int J Rad Oncol Biol Phys. 2012;82:1405–10. MRL-based study presenting the distribution of lymph node metastases in prostate cancer patients with recurrence. 79% of patients had at least one positive lymph node outside the standard radiation field..

    Article  Google Scholar 

  35. Joslyn S, Konety B. Impact of extent of lymphadenectomy on survival after radical prostatectomy for prostate cancer. Urology. 2006;68:121–5.

    Article  PubMed  Google Scholar 

  36. Burkhard F, Studer U. The role of lymphadenectomy in high-risk prostate cancer. World J Urol. 2008;26:231–6.

    Article  PubMed  Google Scholar 

  37. Thurairaja R, Studer U, Burkhard F. Indications, extent, and benefits of pelvic lymph node dissection for patients with bladder and prostate cancer. Oncologist. 2009;14:40–51.

    Article  PubMed  Google Scholar 

  38. Allaf M, Palapattu G, Trock B, Carter H, Walsh P. Anatomical extent of lymph node dissection: impact on men with clinically localized prostate cancer. J Urol. 2004;172:1840.

    Article  PubMed  Google Scholar 

  39. Cheng L, Zincke H, Blute M, et al. Risk of prostate carcinoma death in patients with lymph node metastasis. American cancer society. 2001;91:66–73.

    CAS  Google Scholar 

  40. Fleischmann A, Schobinger S, Schumacher M, Thalmann G, Studer U. Survival in surgically treated, nodal positive prostate cancer patients is predicted by histopathological characteristics of the primary tumor and its lymph node metastases. Prostate. 2009;69:352–62.

    Article  PubMed  Google Scholar 

  41. Meijer H, Debats O, van Lin E, et al. A retrospective analysis of the prognosis of prostate cancer patients with lymph node involvement on MR lymphography: who might be cured? Radiat Oncol. 2013; 8: Epub ahead of print.

  42. RTOG 94–13 A phase III trial comparing whole pelvic irradiation followed by a conedown boost to boost irradiation only and comparing neoadjuvant to adjuvant total androgen suppression (TAS).

  43. Adkinson J, McHaffie D, Bentzen S, et al. Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82:184–90.

    Article  Google Scholar 

  44. Ganswindt U, Paulsen F, Corvin S, et al. Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition. BMC Cancer. 2005;5:91.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Meijer H, Debats O, Kunze-Busch M, et al. Magnetic resonance lymphography-guided selective high dose lymph node irradiation in prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82:175–83.

    Article  PubMed  Google Scholar 

  46. Meijer H, Debats O, van Lin E, et al. Individualized image-based lymph node irradiation for prostate cancer. Nat Rev Urol. 2013;10:376–85.

    Article  CAS  PubMed  Google Scholar 

  47. Würschmidt F, Petersen C, Wahl A, Dahle J, Kretschmer M. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011; 6:44.

    Google Scholar 

  48. Weidner A, van Lin E, Dinter D, et al. Ferumoxtran-10 MR lymphography for target definition and follow-up in a patient undergoing image-guided, dose-escalated radiotherapy of lymph nodes upon PSA relapse. Strahlenther Oncol. 2011;187:206–2012.

    Article  Google Scholar 

  49. Souvatzoglou M. Krause, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99:193–200.

    Article  PubMed  Google Scholar 

  50. Jereczek-Fossa B, Fariselli L, Beltramo G, et al. Linac-based or robotic image-guided stereotactic radiotherapy for isolated lymph node recurrent prostate cancer. Radiother Oncol. 2009;93:14–7.

    Article  PubMed  Google Scholar 

  51. Jereczek-Fossa B, Beltramo G, Fariselli L, et al. Robotic image-guided stereotactic radiotherapy, for isolated recurrent primary, lymph node or metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82:889–97.

    Article  PubMed  Google Scholar 

  52. Casamassima F, Masi L, Menichelli C, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori. 2011;97:49–55.

    CAS  PubMed  Google Scholar 

  53. Berkovic P, De Meerleer G, Delrue L, et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin Genitourin Cancer. 2013;11:27–32.

    Article  PubMed  Google Scholar 

  54. Kishi K, Sonomura T, Shirai S, et al. Reirradiation of paraaortic lymph node metastasis by brachytherapy with hyaluronate injection via paravertebral approach: with DVH comparison to IMRT. Brachytherapy. 2013;12:8–13.

    Article  PubMed  Google Scholar 

  55. Hövels A, Heesakkers R, Adang E, et al. Cost-effectiveness of MR Lymphography for the detection of lymph node metastases in patients with prostate cancer. Radiology. 2009;252:729–36.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Ansje S Fortuin and Dr. Jelle O Barentsz work for the department of Radiology Radboud UMC which owns Combidex/Sinerem.

Dr. Robert Jan Smeenk, Dr. Hanneke JM Meijer, and Dr. Alfred J Witjes each declare no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansje S Fortuin.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortuin, A.S., Smeenk, R.J., Meijer, H.J. et al. Lymphotropic Nanoparticle-enhanced MRI in Prostate Cancer: Value and Therapeutic Potential. Curr Urol Rep 15, 389 (2014). https://doi.org/10.1007/s11934-013-0389-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-013-0389-7

Keywords

Navigation