Skip to main content

Advertisement

Log in

Noncontrast Functional MRI of the Kidneys

  • New Techniques: Imaging (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) techniques enable noninvasive assessment of renal function. Diffusion-weighted imaging, diffusion tensor imaging, blood oxygen level–dependent MRI, magnetic resonance elastography, and arterial spin labeling are some of the emerging techniques that have potential to investigate renal function without the use of exogenous gadolinium contrast. This article discusses the principles of these techniques, as well as their possible applications and limitations. This will introduce the readers to these novel imaging tools, which appear to have promising futures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C-based formulas for prediction of glomerular filtration rate in patients with chronic kidney disease. Nephron Clin Pract. 2010;114(2):c118–26.

    Article  PubMed  CAS  Google Scholar 

  2. Le Bihan D. Diffusion/perfusion MR imaging of the brain: from structure to function. Radiology. 1990;177(2):328–9.

    PubMed  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    PubMed  Google Scholar 

  4. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    PubMed  Google Scholar 

  5. Le Bihan D, Turner R: The capillary network: a link between IVIM and classical perfusion. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 1992, 27(1):171-178.

  6. Dixon WT. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology. 1988;168(2):566–7.

    PubMed  CAS  Google Scholar 

  7. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.

    PubMed  CAS  Google Scholar 

  8. de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N. Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J magn reson imag: JMRI. 2008;28(4):970–8.

    Article  Google Scholar 

  9. Chandarana H, Lee VS. Renal functional MRI: Are we ready for clinical application? AJR Am J Roentgenol. 2009;192(6):1550–7.

    Article  PubMed  Google Scholar 

  10. •• Kataoka M, Kido A, Yamamoto A, Nakamoto Y, Koyama T, Isoda H, Maetani Y, Umeoka S, Tamai K, Saga T et al: Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. Journal of magnetic resonance imaging: JMRI 2009, 29(3):736-744. This is a helpful paper for optimizing the acquisition technique.

    Article  Google Scholar 

  11. Notohamiprodjo M, Glaser C, Herrmann KA, Dietrich O, Attenberger UI, Reiser MF, et al. Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol. 2008;43(10):677–85.

    Article  PubMed  Google Scholar 

  12. Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193(4):1044–52.

    Article  PubMed  Google Scholar 

  13. Mannelli L, Patterson AJ, Zahra M, Priest AN, Graves MJ, Lomas DJ, et al. Evaluation of nonenhancing tumor fraction assessed by dynamic contrast-enhanced MRI subtraction as a predictor of decrease in tumor volume in response to chemoradiotherapy in advanced cervical cancer. AJR Am J Roentgenol. 2010;195(2):524–7.

    Article  PubMed  Google Scholar 

  14. Mannelli L, Valentino M, Laffi G, Lomas DJ, Sigmund EE, Raz E, Chandarana H: [Functional MRI of the kidney]. Giornale italiano di nefrologia: organo ufficiale della Societa italiana di nefrologia 2010, 27(6):599-608.

  15. Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol. 1999;29(2):133–48.

    Article  PubMed  CAS  Google Scholar 

  16. Sty JR, Pan CG. Genitourinary imaging techniques. Pediatr Clin N Am. 2006;53(3):339–61. v.

    Article  Google Scholar 

  17. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251(2):398–407.

    Article  PubMed  Google Scholar 

  18. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology. 2005;235(3):911–7.

    Article  PubMed  Google Scholar 

  19. Hardie AD, Naik M, Hecht EM, Chandarana H, Mannelli L, Babb JS, et al. Diagnosis of liver metastases: value of diffusion-weighted MRI compared with gadolinium-enhanced MRI. Eur Radiol. 2010;20(6):1431–41.

    Article  PubMed  Google Scholar 

  20. Blondin D, Lanzman RS, Mathys C, Grotemeyer D, Voiculescu A, Sandmann W, et al. Functional MRI of transplanted kidneys using diffusion-weighted imaging. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2009;181(12):1162–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bozgeyik Z, Kocakoc E, Sonmezgoz F. Diffusion-weighted MR imaging findings of kidneys in patients with early phase of obstruction. Eur J Radiol. 2009;70(1):138–41.

    Article  PubMed  Google Scholar 

  22. Kim S, Naik M, Sigmund E, Taouli B. Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am. 2008;16(4):585–96. vii-viii.

    Article  PubMed  Google Scholar 

  23. Shah NS, Kruse SA, Lager DJ, Farell-Baril G, Lieske JC, King BF, et al. Evaluation of renal parenchymal disease in a rat model with magnetic resonance elastography. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2004;52(1):56–64.

    Article  Google Scholar 

  24. Yildirim E, Kirbas I, Teksam M, Karadeli E, Gullu H, Ozer I. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol. 2008;65(1):148–53.

    Article  PubMed  Google Scholar 

  25. Binser T, Thoeny HC, Eisenberger U, Stemmer A, Boesch C, Vermathen P. Comparison of physiological triggering schemes for diffusion-weighted magnetic resonance imaging in kidneys. J Magn Reson Imag: JMRI. 2010;31(5):1144–50.

    Article  Google Scholar 

  26. Thoeny HC, Grenier N. Science to practice: Can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fibrosis? Radiology. 2010;255(3):667–8.

    Article  PubMed  Google Scholar 

  27. Thoeny HC, Binser T, Roth B, Kessler TM, Vermathen P. Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology. 2009;252(3):721–8.

    Article  PubMed  Google Scholar 

  28. Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imag: JMRI. 2007;26(3):678–81.

    Article  Google Scholar 

  29. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imag: JMRI. 1999;9(6):832–7.

    Article  CAS  Google Scholar 

  30. Toyoshima S, Noguchi K, Seto H, Shimizu M, Watanabe N. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging. Relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol. 2000;41(6):642–6.

    Article  PubMed  CAS  Google Scholar 

  31. Yang D, Ye Q, Williams DS, Hitchens TK, Ho C. Normal and transplanted rat kidneys: diffusion MR imaging at 7T. Radiology. 2004;231(3):702–9.

    Article  PubMed  Google Scholar 

  32. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  33. Thomsen HS, Marckmann P, Logager VB. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer imaging: the official publication of the International Cancer Imaging Society. 2007;7:130–7.

    Google Scholar 

  34. Thomsen HS, Marckmann P, Logager VB. Enhanced computed tomography or magnetic resonance imaging: a choice between contrast medium-induced nephropathy and nephrogenic systemic fibrosis? Acta Radiol. 2007;48(6):593–6.

    Article  PubMed  CAS  Google Scholar 

  35. Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology. 2011;259(1):25–38.

    Article  PubMed  Google Scholar 

  36. • Eisenberger U, Thoeny HC, Binser T, Gugger M, Frey FJ, Boesch C, Vermathen P: Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. European radiology 2010, 20(6):1374-1383. This paper opens the possibility to significant clinical applications.

    Article  PubMed  Google Scholar 

  37. Powers TA, Lorenz CH, Holburn GE, Price RR. Renal artery stenosis: in vivo perfusion MR imaging. Radiology. 1991;178(2):543–8.

    PubMed  CAS  Google Scholar 

  38. Fukuda Y, Ohashi I, Hanafusa K, Nakagawa T, Ohtani S, An-naka Y, et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magn Reson Imag: JMRI. 2000;11(2):156–60.

    Article  CAS  Google Scholar 

  39. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N. Diffusion tensor MRI of the human kidney. J Magn Reson Imag: JMRI. 2001;14(1):42–9.

    Article  CAS  Google Scholar 

  40. Kido A, Kataoka M, Yamamoto A, Nakamoto Y, Umeoka S, Koyama T, et al. Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla. Acta Radiol. 2010;51(9):1059–63.

    Article  PubMed  Google Scholar 

  41. Notohamiprodjo M, Dietrich O, Horger W, Horng A, Helck AD, Herrmann KA. Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Investig Radiol. 2010;45(5):245–54.

    Article  Google Scholar 

  42. Notohamiprodjo M, Reiser MF, Sourbron SP. Diffusion and perfusion of the kidney. Eur J Radiol. 2010;76(3):337–47.

    Article  PubMed  Google Scholar 

  43. •• Hueper K, Gutberlet M, Rodt T, Gwinner W, Lehner F, Wacker F, et al.: Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 2011. This is a very interesting paper on potential clinical applications.

  44. Djamali A, Sadowski EA, Muehrer RJ, Reese S, Smavatkul C, Vidyasagar A, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol. 2007;292(2):F513–22.

    Article  PubMed  CAS  Google Scholar 

  45. Juillard L, Lerman LO, Kruger DG, Haas JA, Rucker BC, Polzin JA, et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int. 2004;65(3):944–50.

    Article  PubMed  Google Scholar 

  46. Prasad PV, Chen Q, Goldfarb JW, Epstein FH, Edelman RR. Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J magn Reson Imag: JMRI. 1997;7(6):1163–5.

    Article  CAS  Google Scholar 

  47. Sadowski EA, Fain SB, Alford SK, Korosec FR, Fine J, Muehrer R, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology. 2005;236(3):911–9.

    Article  PubMed  Google Scholar 

  48. Textor SC, Glockner JF, Lerman LO, Misra S, McKusick MA, Riederer SJ, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol: JASN. 2008;19(4):780–8.

    Article  PubMed  Google Scholar 

  49. Sadowski EA, Djamali A, Wentland AL, Muehrer R, Becker BN, Grist TM, et al. Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging. 2010;28(1):56–64.

    Article  PubMed  Google Scholar 

  50. Prasad P, Li LP, Halter S, Cabray J, Ye M, Batlle D. Evaluation of renal hypoxia in diabetic mice by BOLD MRI. Invest Radiol. 2010;45(12):819–22.

    Article  PubMed  Google Scholar 

  51. •• Yin WJ, Liu F, Li XM, Yang L, Zhao S, Huang ZX, et al.: Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol 2011. This paper is interesting for both the potential clinical application and the imaging technique.

  52. Ehman EC, Rossman PJ, Kruse SA, Sahakian AV, Glaser KJ. Vibration safety limits for magnetic resonance elastography. Phys Med Biol. 2008;53(4):925–35.

    Article  PubMed  CAS  Google Scholar 

  53. McDannold N, Maier SE. Magnetic resonance acoustic radiation force imaging. Med Phys. 2008;35(8):3748–58.

    Article  PubMed  Google Scholar 

  54. Mannelli L, Godfrey E, Joubert I, Patterson AJ, Graves MJ, Gallagher FA, et al. MR elastography: Spleen stiffness measurements in healthy volunteers–preliminary experience. AJR Am J Roentgenol. 2010;195(2):387–92.

    Article  PubMed  Google Scholar 

  55. Chung S, Breton E, Mannelli L, Axel L. Liver stiffness assessment by tagged MRI of cardiac-induced liver motion. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2011;65(4):949–55.

    Article  Google Scholar 

  56. Mannelli L, Godfrey E, Graves MJ, Patterson AJ, Beddy P, Bowden D, Joubert I, Priest AN, Lomas DJ: Magnetic resonance elastography: Feasibility of liver stiffness measurements in healthy volunteers at 3T. Clinical radiology 2011.

  57. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.

    Article  PubMed  CAS  Google Scholar 

  58. Rouviere O, Souchon R, Pagnoux G, Menager JM, Chapelon JY. Magnetic resonance elastography of the kidneys: Feasibility and reproducibility in young healthy adults. J Magn Reson Imag: JMRI. 2011;34(4):880–6.

    Article  Google Scholar 

  59. Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC. Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2009;61(6):1374–87.

    Article  Google Scholar 

  60. Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A, et al. Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging. 2011;29(1):74–82.

    Article  PubMed  Google Scholar 

  61. Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology. 2006;238(3):1013–21.

    Article  PubMed  Google Scholar 

  62. Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2004;51(2):353–61.

    Article  Google Scholar 

  63. Szolar DH, Preidler K, Ebner F, Kammerhuber F, Horn S, Ratschek M, et al. Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging. 1997;15(7):727–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Magnetic Resonance Imaging and Spectroscopy (MRIS) Unit, Addenbrooke's Hospital, Cambridge, United Kingdom.

The authors participated equally in the writing of this manuscript.

Disclosures

L. Mannelli: none. Dr. Jeffrey H. Maki has served as a consultant for Bayer Medical, has received grants from Bracco Diagnostics, and has received payment for lectures from Lantheus Medical. S. F. Osman: none. Dr. Hersh Chandarana has received research support from Siemens Health Care. D. J. Lomas: none. Dr. William Shuman has received grants from GE Healthcare. K. F. Linnau: none. D. E. Green: none; G. Laffi: none; M. Moshiri: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Mannelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannelli, L., Maki, J.H., Osman, S.F. et al. Noncontrast Functional MRI of the Kidneys. Curr Urol Rep 13, 99–107 (2012). https://doi.org/10.1007/s11934-011-0229-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-011-0229-6

Keywords

Navigation