Skip to main content

Advertisement

Log in

Heat shock proteins in the genitourinary system

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Heat shock proteins are ubiquitous molecules that are expressed in all living organisms in response to stress. They have two specific roles: protection against cell damage and modulation of the immune response. Recent studies have dramatically increased our knowledge and understanding of the role of heat shock proteins in the genitourinary system. This review uses a Medline approach to examine the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kaufmann SH: Heat shock proteins in health and disease. Int J Clin Lab Res 1992, 2:221–226.

    Article  Google Scholar 

  2. Granel B, Swiader L, Serratrice J, et al.: Heat shock proteins or “stress proteins” [in French]. Rev Med Interne 2000, 21:421–427.

    Article  PubMed  CAS  Google Scholar 

  3. De Maio A: The heat-shock response. New Horiz 1995, 3:198–207.

    Google Scholar 

  4. Kaufmann SH: Heat shock proteins and the immune response. Immunol Today 1990, 11:129–136.

    Article  PubMed  CAS  Google Scholar 

  5. Hartl FU: Molecular chaperones in cellular protein folding. Nature 1996, 381:571–579.

    Article  PubMed  CAS  Google Scholar 

  6. Welch WJ: Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 1992, 72:1063–1081.

    PubMed  CAS  Google Scholar 

  7. Fuller KJ, Issels RD, Slosman DO, et al.: Cancer and the heat shock response. Eur J Cancer 1994, 30A:1884–1891.

    Article  PubMed  CAS  Google Scholar 

  8. Ciocca DR, Oesterreich S, Chamness GC, et al.: Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 1993, 85:1558–1570.

    Article  PubMed  CAS  Google Scholar 

  9. Saleh A, Srinivasula SM, Balkir L, et al.: Negative regulation of the Apaf-1 apoptosome by HSP70. Nat Cell Biol 2000, 2:476–483. This paper, in conjunction with the next reference, is the first evidence of the mechanism by which HSPs regulate the apoptotic cascade at the level of the mitochondria, via the inhibition of apoptosome formation.

    Article  PubMed  CAS  Google Scholar 

  10. Beere HM, Wolf BB, Cain K, et al.: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000, 2:469–475. This paper, in conjunction with the previous reference, is the first evidence of the mechanism by which HSPs regulate the apoptotic cascade at the level of the mitochondria, via the inhibition of apoptosome formation.

    Article  PubMed  CAS  Google Scholar 

  11. Finlay CA, Hinds PW, Tan TH, et al.: Activating mutations for transformation by p53 produce a gene product that form an hsc 70-p53 complex with an altered half-life. Mol Cell Biol 1988, 8:531–539.

    PubMed  CAS  Google Scholar 

  12. Jolly C, Morimoto RI: Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000, 92:1564–1572.

    Article  PubMed  CAS  Google Scholar 

  13. Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989, 57:1083–1093.

    Article  PubMed  CAS  Google Scholar 

  14. Sireci G, Dieli F, Salerno A: T cells recognize an immunodominant epitote of heat shock protein 65 in Kawasaki disease. Mol Med 2000, 6:581–590.

    PubMed  CAS  Google Scholar 

  15. Multhoff G, Botzler C, Issels R: The role of heat shock proteins in the stimulation of an immune response. Biol Chem 1998, 379:295–300.

    PubMed  CAS  Google Scholar 

  16. Wells AD, Malkovksy M: Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 2000, 21:129–132. This review clearly outlines the mechanism by which HSPs can regulate the immune response, one of their important functions.

    Article  PubMed  CAS  Google Scholar 

  17. Srivastava PK: Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia 1994, 50:1054–1060.

    Article  PubMed  CAS  Google Scholar 

  18. Zugel U, Shoel B, Yamamoto S, et al.: Crossrecognition by CD8 T cell receptor alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial HSP60 which share intermediate sequence homology. Eur J Immunol 1995, 25:451–458.

    Article  PubMed  CAS  Google Scholar 

  19. Cornford PA, Dodson AR, Parsons KF, et al.: Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000, 15:7099–7105. This represents one of the largest studies of HSPs by immunohistochemistry. The authors demonstrate that HSP expression is specifically and consistently modulated in early and advanced human prostate cancer.

    Google Scholar 

  20. Bostwick DG: Immunohistochemical changes in prostate cancer after androgen deprivation therapy. Mol Urol 2000, 4:101–106.

    PubMed  CAS  Google Scholar 

  21. Bubendorf L, Kolmer M, Kononen J, et al.: Hormone therapy failure in human prostate cancer: analysis of complementary DNA and tissue microarrays. J Natl Cancer Inst 1999, 91:1758–1764.

    Article  PubMed  CAS  Google Scholar 

  22. Gibbons NB, Watson RWG, Coffey RNT, et al.: Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 2000, 45:58–65.

    Article  PubMed  CAS  Google Scholar 

  23. Storm FK, Mahvi DM, Glichrist KW: HSP-27 has no diagnostic or prognostic significance in prostate or bladder cancers. Urology 1993, 42:379–382.

    Article  PubMed  CAS  Google Scholar 

  24. Cardillo MR, Sale P, Di Silverio F: Heat shock protein-90, IL-6 and IL-10 in bladder cancer. Anticancer Res 2000, 20:4579–4583.

    PubMed  CAS  Google Scholar 

  25. Zlotta AR, Drowart A, Huygen K, et al.: Humoral response against heat shock proteins and other mycobacterial antigens after intravesical treatment with bacille Calmette-Guerin (BCG) in patients with superficial bladder cancer, Clin Exp Immunol 1997, 109:157–165.

    Article  PubMed  CAS  Google Scholar 

  26. Zlotta AR, Drowart A, Van Vooren JP, et al.: Superficial bladder tumors and increased reactivity against mycobacterial antigens before bacillus Calmette-Guerin therapy. J Urol 1998, 159:1885–1891.

    Article  PubMed  CAS  Google Scholar 

  27. Lebret T, Becette V, Barbagelatta M, et al.: Correlation between p53 overexpression and response to bacillus Calmette-Guerin therapy in a high risk select population with T1G3 bladder cancer. J Urol 1998, 159:788–791.

    Article  PubMed  CAS  Google Scholar 

  28. Pinhasi-Kimhi O, Michalovitz D, Ben-Zeev A, Oren M: Specific interactions between the p53 cellular tumour antigen and major heat shock proteins. Nature 1986, 320:182–184.

    Article  PubMed  CAS  Google Scholar 

  29. Multhoff G, Botzler C, Wiesnet M: Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 1997, 158:4341–4350.

    PubMed  CAS  Google Scholar 

  30. Roigas J, Wallen ES, Loening SA, Moseley PL: Heat shock protein (HSP72) surface expression enhance the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol 1998, 451:225–229.

    PubMed  CAS  Google Scholar 

  31. Yoshino I, Goedegebuure PS, Peoples GE, et al.: Human tumorinfiltrating CD4+ T cells react to B cell lines expressing heat shock protein 70. J Immunol 1994, 153:4149–4158.

    PubMed  CAS  Google Scholar 

  32. Takashi M, Katsuno S, Sakata T, et al.: Different concentrations of two small stress proteins, alphaB crystallin and HSP27 in human urological tumor tissues. Urol Res 1998, 26:395–399.

    Article  PubMed  CAS  Google Scholar 

  33. Santarosa M, Favaro D, Quaia M, Galligioni D: Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 1997, 33:873–877.

    Article  PubMed  CAS  Google Scholar 

  34. Richards EH, Hickman JA, Master JR: Heat shock protein expression in testis and bladder cancer cell lines exhibiting differential sensitivity to heat. Br J Cancer 1995, 72:620–626.

    PubMed  CAS  Google Scholar 

  35. Komatsuda A, Wakui H, Imai H, et al.: Renal localization of the constitutive 73-kDa heat shock protein in normal and PAN rats. Kidney Int 1992, 41:1204–1212.

    Article  PubMed  CAS  Google Scholar 

  36. Yokoo T, Kitamura M: IL-1beta depressed expression of the 70-kilodalton heat shock protein and sensitizes glomerular cells to oxidant-initiated apoptosis. J Immunol 1997, 159:2886–2892.

    PubMed  CAS  Google Scholar 

  37. Komatsuda A, Wakui H, Oyama Y, et al.: Overexpression of the human 72 kDa heat shock protein in renal tubular cells confers resistance against oxidative injury and cisplatin toxicity. Nephrol Dial Transplant 1999, 14:1385–1390.

    Article  PubMed  CAS  Google Scholar 

  38. Bidmon B, Endemann M, Muller T, et al.: Heat shock protein-70 repairs proximal tubule structure after renal ischemia. Kidney Int 2000, 58:2400–2407.

    Article  PubMed  CAS  Google Scholar 

  39. Kahn W, McGuirt JP, Sens MA et al.: Expression of heat shock protein 27 in developing and adult human kidney. Toxicol Lett 1996, 84:69–79.

    Article  Google Scholar 

  40. Morita K, Wakui H, Komatsuda A: Induction of heat-shock proteins HSP73 and HSP90 in rat kidneys after ischemia. Ren Fail 1995, 17:405–419.

    PubMed  CAS  Google Scholar 

  41. Akcetin Z, Pregla R, Darmer D, et al.: During ischemia-reperfusion in rat kidneys, heat shock response is not regulated by expressional changes of heat shock factor 1. Transpl Int 2000, 13:297–302.

    Article  PubMed  CAS  Google Scholar 

  42. Joannidis M, Cantley L, Spokes K, et al.: Induction of heatshock proteins does not prevent renal tubular injury following ischemia. Kidney Int 1995, 47:1752–1759.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly KJ, Baird NR, Greene AL: Induction of stress response proteins and experimental renal ischemia/reperfusion. Kidney Int 2001, 59:1798–1802. This is the first study to examine in detail the timing of HSP expression and its relevance to the protective effects of these proteins. This article clearly demonstrates that HSPs are protective against the damaging effects of ischemia/reperfusion injury.

    Article  PubMed  CAS  Google Scholar 

  44. Park KM, Kramers C, Vayssier-Taussat M, et al.: Prevention of kidney ischemia/reperfusion-induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction. J Biol Chem 2002, 277:2040–2049. This paper explores for the first time the intracellular signaling mechanisms that are inhibited by HSP expression, and opens up new targets for manipulation of tissues with ischemia/reperfusioninduced damage.

    Article  PubMed  CAS  Google Scholar 

  45. Yang CW, Kim BS, Kim J, et al.: Preconditioning with sodium arsenite inhibits apoptotic cell death in rat kidney with ischemia/reperfusion or cyclosporine-induced injuries. The possible role of heat-shock protein 70 as a mediator of ischemic tolerance. Exp Nephrol 2001, 9:284–294. Chemical preconditioning may also be a more therapeutically relevant method of inducing the expression of HSPs and protection against subsequent injury. This paper explores the use of sodium arsenite in such an approach.

    Article  PubMed  CAS  Google Scholar 

  46. Yang CW, Ahn HJ, Han HK, et al.: Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney. Transplantation 2001, 72:1753–1759.

    Article  PubMed  CAS  Google Scholar 

  47. Lin KC, Krieg RJ, Saborio P, Chan JC: Increased heat shock protein-70 in unilateral ureteral obstruction in rats. Mol Genet Metab 1998, 65:303–310.

    Article  PubMed  CAS  Google Scholar 

  48. Moriyama T, Kawada N, Ando A, et al.: Up-regulation of HSP47 in the mouse kidney with unilateral ureteral obstruction. Kidney Int 1998, 54:110–119.

    Article  PubMed  CAS  Google Scholar 

  49. Howard RJ, Patton PR, Reed AI, et al.: The changing causes of graft loss and death after kidney transplantation. Transplantation 2002, 73:1923–1928.

    Article  PubMed  Google Scholar 

  50. Wissing K, Abramowicz B, Broeders N, Vereerstraeten P: Hypercholesterolemia is associated with increased kidney graft loss caused by chronic rejection in male patients with previous acute rejection. Transplantation 2000, 70:464–472.

    Article  PubMed  CAS  Google Scholar 

  51. Bellemare S, Vigneault N, Madore F, et al.: Enhanced development of caspase-independent cortical cell death during cold storage in kidneys of non-heart-beating donors. Transplantation 2002, 73:1742–1751.

    Article  PubMed  CAS  Google Scholar 

  52. Redaelli CA, Wagner M, Kulli C, et al.: Hyperthermia-induced HSP expression correlates with improved rat renal isograft viability and survival in kidneys harvested from non-heartbeating donors. Transpl Int 2001, 14:351–360. This paper demonstrates how HSPs protected transplanted organs from rejection.

    Article  PubMed  CAS  Google Scholar 

  53. Trieb K, Dirnhofer S, Krumbock N, et al.: Heat shock protein expression in the transplanted human kidney. Transpl Int 2001, 14:281–286. In contrast to the work of Wissing et al. [50] this paper demonstrates an association between renal transplant rejection and higher immunohistochemical scoring for HSP 60, 72, and 73.

    Article  PubMed  CAS  Google Scholar 

  54. Chen HC, Guh JY, Tsai JH, Lai YH: Induction of heat shock protein 70 protects mesangial cells against oxidative injury. Kidney Int 1999, 56:1270–1273.

    Article  PubMed  CAS  Google Scholar 

  55. Neuhofer W, Lugmayr K, Fraek ML, Beck FX: Regulated over expression of heat shock protein 72 protects Medin-Darby canine kidney cells from the detrimental effects of high urea concentrations. J Am Soc Nephrol 2001, 12:2565–2571.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, R.W.G., Lebret, T. & Fitzpatrick, J.M. Heat shock proteins in the genitourinary system. Curr Urol Rep 4, 70–76 (2003). https://doi.org/10.1007/s11934-003-0060-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-003-0060-9

Keywords

Navigation