Skip to main content

Advertisement

Log in

Tissue engineering in urology: Where are we going?

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Tissue engineering in urology is a broad term used to describe the development of alternative tissue sources for diseased or dysfunctional native urologic tissue. This article reviews the recently published techniques involving synthetic and natural biodegradable matrices alone, known as “unseeded” scaffolds, and the latest data on “seeded” scaffolds, which are impregnated with cultured cells from urologic organs. Recent discoveries in reporter gene labeling of urologic tissue are discussed as a new method to identify and track the fates of these transplanted cells in vivo. This article also investigates how these bioengineering techniques are applied to synthetic and natural scaffolds, such as polyglycolic acid and porcine small intestine submucosa, to increase bladder capacity, repair urethral strictures, and replace corporal plaques in Peyronie’s disease. Furthermore, recently published reports that these materials have been seeded with chondrocytes to create corporal rods for penile prostheses and stents for ureteral and urethral stricture disease are discussed. With these latest developments as a foundation, the future directions of tissue engineering in urology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. McDougal WS: Metabolic complications of urinary intestinal diversion. J Urol 1992, 147:1199–1208.

    PubMed  CAS  Google Scholar 

  2. Blyth B, Ewalt DH, Duckett JW, Snyder HM III: Lithogenic properties of enterocystoplasty. J Urol 1992, 148:575–577.

    PubMed  CAS  Google Scholar 

  3. Kaefer M, Tobin MS, Hendren WH, et al.: Continent urinary diversion: the Children’s Hospital experience. J Urol 1997, 157:1394–1399.

    Article  PubMed  CAS  Google Scholar 

  4. Atala A: Tissue engineering, stem cells, and cloning: applications in urology. Contemp Urol 2002, 14:40–57.

    Google Scholar 

  5. Reddy PP, Barrieras DJ, Woodhouse K, et al.: A bioprosthetic bladder acellular matrix allograft: evaluation of large segment (> 24 cm2) substitution in a porcine model. J Urol 1999, 161:65.

    Article  Google Scholar 

  6. Piechota HJ, Dahms SE, Probst M, et al.: Functional rat bladder regeneration through xenotransplantation of the bladder acellular matrix graft. Br J Urol 1998, 81:548–559.

    PubMed  CAS  Google Scholar 

  7. Sutherland RS, Baskin LS, Hayward SW, Cunha GR: Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol 1996, 156:571–577.

    Article  PubMed  CAS  Google Scholar 

  8. Pariente JL, Kim BS, Atala A: In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol 2002, 167:1867–1871.

    Article  PubMed  Google Scholar 

  9. Kropp BP, Eppley BL, Prevel CD, et al.: Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995, 46:396–400.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Kropp BP, Moore P, et al.: Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 2000, 164:928–934.

    Article  PubMed  CAS  Google Scholar 

  11. Wefer J, Sievert KD, Schlote N, et al.: Time-dependent smooth muscle regeneration and maturation in a bladder acellular matrix graft: histological studies and in vivo functional evaluation. J Urol 2001, 165:1755–1759.

    Article  PubMed  CAS  Google Scholar 

  12. Piechota HJ, Gleason CA, Dahms SE, et al.: Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder. Urol Res 1999, 27:206–213.

    Article  PubMed  CAS  Google Scholar 

  13. Brown AL, Farhat W, Merguerian PA, et al.: 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 2002, 23:2179–2190.

    Article  PubMed  CAS  Google Scholar 

  14. Pope JC 4th, Davis MM, Smith ER Jr, et al.: The ontogeny of canine small intestinal submucosa regenerated bladder. J Urol 1997, 158:1105–1110.

    Article  PubMed  Google Scholar 

  15. Atala A, Vacanti JP, Peters CA, et al.: Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 1992, 148:658–662.

    PubMed  CAS  Google Scholar 

  16. Atala A, Freeman MR, Vacanti JP, et al.: Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 1993, 150:608–612.

    PubMed  CAS  Google Scholar 

  17. Oberpenning F, Meng J, Yoo JJ, Atala A: De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotech 1999, 17:149–155.

    Article  CAS  Google Scholar 

  18. Yoo JJ, Meng J, Oberpenning F, Atala A: Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 1998, 51:221–225.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Cheng EY, Lin HK, et al.: Tissue engineered bladder regeneration with cell seeded small intestinal submucosa. Paper presented at the Annual Meeting of the American Urological Association. Orlando, FL. May 25–30, 2002.

  20. Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL: Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng 1996, 2:209–217.

    Article  CAS  PubMed  Google Scholar 

  21. Voytik-Harbin SL, Brightman AO, Kraine MR, et al.: Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997, 67:478–491.

    Article  PubMed  CAS  Google Scholar 

  22. Hodde JP, Badylak SF, Record RD: Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 2000, 8:11–24.

    Google Scholar 

  23. Voytik-Harbin SL, Brightman AO, Waisner BZ, et al.: Small intestinal submucosa: a tissue derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng 1998, 4:157–174.

    Article  Google Scholar 

  24. Yokoyama T, Huard J, Pruchnic R, et al.: Muscle-derived cell transplantation and differentiation into lower urinary tract smooth muscle. Urology 2001, 57:826–831.

    Article  PubMed  CAS  Google Scholar 

  25. Kalil RA, Teixeira LA, Mastalir ET, et al.: Experimental model of gene transfection in healthy canine myocardium: perspectives of gene therapy for ischemic heart disease. Arq Bras Cardiol 2002, 79:223–232.

    Article  PubMed  CAS  Google Scholar 

  26. Duisit G, Conrath H, Saleun S, et al.: Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002, 6:446–454.

    Article  PubMed  CAS  Google Scholar 

  27. Motoike T, Loughna S, Perens E, et al.: Universal GFP reporter for the study of vascular development. Genesis 2000, 28:75–81.

    Article  PubMed  CAS  Google Scholar 

  28. Kruska J, Lin HK, Cowan R, et al.: Green fluorescent protein expression in bladder smooth muscle cells. Paper presented at the 81st Annual Meeting of the American Urological Association South Central Section. Colorado Springs, CO. October 5–9, 2002.

  29. Cheng EY, Cowan R, Zhang Y, et al.: In vitro mitogenic and adhesion properties of bladder neuropathic smooth muscle cells. Paper presented at the Annual Meeting of the American Urological Association. Anaheim, CA. June 2–7, 2001.

  30. Cheng EY, Moore P, Cowan R, et al.: Comparison of the in vitro mitogenic and adhesion properties of neuropathic and normal bladder smooth muscle cells: implications for tissue engineering. Paper presented at the Annual Meeting of the American Academy of Pediatrics. Chicago, IL. October 28–November 1, 2000.

  31. Romero-Ramos M, Vourc’h P, Young HE, et al.: Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 2002, 69:894–907.

    Article  PubMed  CAS  Google Scholar 

  32. Boheler KR, Czyz J, Tweedie D, et al.: Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002, 91:189–201.

    Article  PubMed  CAS  Google Scholar 

  33. Paquin J, Danalache BA, Jankowski M, et al.: Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci U S A 2002, 99:9550–9555.

    Article  PubMed  CAS  Google Scholar 

  34. Oishi K, Ogawa Y, Gamoh S, Uchida MK: Contractile responses of smooth muscle cells differentiated from rat neural stem cells. J Physiol 2002, 540:139–152.

    Article  PubMed  CAS  Google Scholar 

  35. Imai E, Ito T: Can bone marrow differentiate into renal cells? Pediatr Nephrol 2002, 17:790–794.

    Article  PubMed  Google Scholar 

  36. Ferrari G, Mavilio F: Myogenic stem cells from the bone marrow: a therapeutic alternative for muscular dystrophy? Neuromuscul Disord 2002, 12(suppl 1):S7-S10.

    Article  PubMed  Google Scholar 

  37. Simper D, Stalboerger PG, Panetta CJ, et al.: Smooth muscle progenitor cells in human blood. Circulation 2002, 106:1199–1204.

    Article  PubMed  CAS  Google Scholar 

  38. Ohishi K, Katayama N, Mitani H, et al.: Efficient ex vivo generation of human dendritic cells from mobilized CD34+ peripheral blood progenitors. Int J Hematol 2001, 74:287–296.

    Article  PubMed  CAS  Google Scholar 

  39. Kropp BP, Zhang Y, Tomasek JJ, et al.: Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J Urol 1999, 162:1779–1784.

    Article  PubMed  CAS  Google Scholar 

  40. Bazeed MA, Thuroff JW, Schmidt RA, Tanagho EA: New surgical procedure for management of Peyronie’s disease. Urology 1983, 21:501–504.

    Article  PubMed  CAS  Google Scholar 

  41. Olsen L, Bowald S, Busch C, et al.: Urethral reconstruction with a new synthetic absorbable device: an experimental study. Scand J Urol Nephrol 1992, 26:323–326.

    Article  PubMed  CAS  Google Scholar 

  42. Kropp BP, Ludlow JK, Spicer D, et al.: Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998, 52:138–142.

    Article  PubMed  CAS  Google Scholar 

  43. Parnigotto PP, Gamba PG, Conconi MT, Midrio P: Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res 2000, 28:46–51.

    Article  PubMed  CAS  Google Scholar 

  44. Chen F, Yoo JJ, Atala A: Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 1999, 54:407–410.

    Article  PubMed  CAS  Google Scholar 

  45. el-Kassaby E: A novel inert collagen matrix for urethral stricture repair. J Urol 2000, 163:70–71.

    Google Scholar 

  46. de Filippo RE, Yoo JJ, Atala A: Urethral replacement using cell seeded tubularized collagen matrices. J Urol 2002, 168:1789–1792. This article describes urethral replacement in an animal model using seeded scaffold. No subsequent graft shrinkage or stricture formation was observed.

    Article  PubMed  Google Scholar 

  47. Bach AD, Bannasch H, Galla TJ, et al.: Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng 2001, 7:45–53.

    Article  PubMed  CAS  Google Scholar 

  48. Colvert JR 3rd, Kropp BP, Cheng EY, et al.: The use of small intestinal submucosa as an off-the-shelf urethral sling material for pediatric urinary incontinence. J Urol 2002, 168:1872–1875.

    Article  PubMed  Google Scholar 

  49. Zaontz M: Editorial comment on: use of small intestinal submucosa for corporal body grafting in cases of severe penile curvature. J Urol 2002, 168:1745.

    Article  Google Scholar 

  50. Kershen RT, Atala A: New advances in injectable therapies for the treatment of incontinence and vesicoureteral reflux. Urol Clin North Am 1999, 26:81–94.

    Article  PubMed  CAS  Google Scholar 

  51. Puri P, Ninan GK, Surana R: Subureteric Teflon injection (STING): results of a European survey. Eur Urol 1995, 27:71–75.

    PubMed  CAS  Google Scholar 

  52. Kumon H, Tsugawa M, Ozawa H, et al.: Endoscopic correction of vesicoureteral reflux by subureteric Teflon (polytetrafluoroethylene) injection: review of 6-year experience. Int J Urol 1997, 4:541–545.

    PubMed  CAS  Google Scholar 

  53. Haferkamp A, Contractor H, Mohring K, et al.: Failure of subureteral bovine collagen injection for the endoscopic treatment of primary vesicoureteral reflux in long-term follow-up. Urology 2000, 55:759–763.

    Article  PubMed  CAS  Google Scholar 

  54. Misra D, Potts SR, Brown S, Boston VE: Endoscopic treatment of vesico-ureteric reflux in neurogenic bladder: 8 years’ experience. J Pediatr Surg 1996, 31:1262–1264.

    Article  PubMed  CAS  Google Scholar 

  55. Kato T, Nakada T, Ishigooka M, et al.: Successful treatment of vesicoureteric reflux by subureteric injection of silicone. Int Urol Nephrol 1995, 27:709–715.

    Article  PubMed  CAS  Google Scholar 

  56. Aaronson IA, Rames RA, Greene WB, et al.: Endoscopic treatment of reflux: migration of Teflon to the lungs and brain. Eur Urol 1993, 23:394–399.

    PubMed  CAS  Google Scholar 

  57. Granata C, Buffa P, Di Rovasenda E, et al.: Treatment of vesicoureteric reflux in children with neuropathic bladder: a comparison of surgical and endoscopic correction. J Pediatr Surg 1999, 34:1836–1838.

    Article  PubMed  CAS  Google Scholar 

  58. Lottmann HB, Margaryan M, Bernuy M, et al.: The effect of endoscopic injections of dextranomer based implants on continence and bladder capacity: a prospective study of 31 patients. J Urol 2002, 168:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  59. Capozza N, Caione P: Dextranomer/hyaluronic acid copolymer implantation for vesico-ureteral reflux: a randomized comparison with antibiotic prophylaxis. J Pediatr 2002, 140:230–234.

    Article  PubMed  CAS  Google Scholar 

  60. Stenberg A, Lackgren G: A new bioimplant for the endoscopic treatment of vesicoureteral reflux: experimental and shortterm clinical results. J Urol 1995, 154:800–803.

    Article  PubMed  CAS  Google Scholar 

  61. Atala A, Cima LG, Kim W, et al.: Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 1993, 150:745–747.

    PubMed  CAS  Google Scholar 

  62. Atala A, Kim W, Paige KT, et al.: Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 1994, 152:641–643.

    PubMed  CAS  Google Scholar 

  63. Zhang YY, Bailey RR: Treatment of vesicoureteric reflux in a sheep model using subureteric injection of cultured fetalbladder tissue. Pediatr Surg Int 1998, 13:32–36.

    Article  PubMed  Google Scholar 

  64. Amiel GE, Yoo JJ, Kim BS, Atala A: Tissue engineered stents created from chondrocytes. J Urol 2001, 165:2091–2095.

    Article  PubMed  CAS  Google Scholar 

  65. Monga M, Cosgrove D, Zupkas P, et al.: Small intestinal submucosa as a tunica albuginea graft material. J Urol 2002, 168:1215–1221.

    Article  PubMed  Google Scholar 

  66. Brannigan RE, Kim ED, Oyasu R, McVary KT: Comparison of tunica albuginea substitutes for the treatment of Peyronie’s disease. J Urol 1998, 159:1064–1068.

    Article  PubMed  CAS  Google Scholar 

  67. Park HJ, Yoo JJ, Kershen RT, et al.: Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol 1999, 162:1106–1109.

    Article  PubMed  CAS  Google Scholar 

  68. Kershen RT, Yoo JJ, Moreland RB, et al.: Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng 2002, 8:515–524.

    Article  PubMed  Google Scholar 

  69. Kwon TG, Yoo JJ, Atala A: Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol 2002, 168:1754–1758. These studies successfully cultured and reimplanted cavernosal tissue. Animal models with cultured tissue showed functional parameters similar to those seen in normal controls.

    Article  PubMed  CAS  Google Scholar 

  70. Kim BS, Yoo JJ, Atala A: Engineering of human cartilage rods: potential application for penile prostheses. J Urol 2002, 168:1794–1797. Cartilaginous tissue harvested from the ear was expanded in vitro and seeded matrices were implanted into animal models. No loss of graft size or elasticity was observed over time.

    Article  PubMed  CAS  Google Scholar 

  71. Schoeller T, Lille S, Bauer T, et al.: Gracilis muscle flap with a tissue-engineered lining for experimental bladder wall reconstruction. BJU Int 2001, 88:104–109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metwalli, A.R., Colvert, J.R. & Kropp, B.P. Tissue engineering in urology: Where are we going?. Curr Urol Rep 4, 156–163 (2003). https://doi.org/10.1007/s11934-003-0044-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-003-0044-9

Keywords

Navigation