Skip to main content

Advertisement

Log in

Deep Insight into the Role of MIF in Spondyloarthritis

  • Spondyloarthritis (MA Khan and N Akkoc, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pathological roles of macrophage migration inhibitory factor (MIF) have recently been demonstrated in spondyloarthritis (SpA) preclinical models, identifying MIF as a new treatment target for SpA. However, the specific contribution of MIF and therapeutic potential of MIF-targeted therapies to various tissue types affected by SpA are not well delineated.

Recent Findings

MIF and its cognate receptor CD74 are extensively involved in the pathogenesis of SpA including inflammation in the spine, joint, eyes, skin, and gut. The majority of the current evidence has consistently shown that MIF drives the inflammation in these distinct anatomical sites. In preclinical models, genetic deletion or blockade of MIF reduces the severity of inflammation. Although MIF is generally an upstream cytokine which regulates downstream effector cytokines, MIF also intensifies type 3 immunity by promoting helper T 17 (Th17) plasticity. MIF- or CD74-targeted therapies have also reported to be well tolerated in clinical trials for other diseases.

Summary

Recent findings suggest that MIF-CD74 axis is a new therapeutic target for SpA to improve various clinical features. Clinical trials for MIF- or CD74-targeted therapies for SpA patients are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol. England; 2022;32(3):484-492.

  2. Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat Rev Rheumatol United States. 2017;13:359–67.

    Article  CAS  Google Scholar 

  3. Dougados M, Baeten D. Spondyloarthritis Lancet England. 2011;377:2127–37.

    Article  Google Scholar 

  4. Nakamura A, Haroon N. Recent updates in the immunopathology of type 3 immunity-mediated enthesitis. CurrRheumatol Rep. United States; 2021;23:31.

  5. Nakamura A, Talukdar A, Nakamura S, Pathan E, Haroon N. Bone formation in axial spondyloarthritis: is disease modification possible? Best Pract Res Clin Rheumatol. Netherlands. 2019;33: 101491.

    Google Scholar 

  6. Haroon NN, Paterson JM, Li P, Inman RD, Haroon N. Patients with ankylosing spondylitis have increased cardiovascular and cerebrovascular mortality: a population-based study. Ann Intern Med United States. 2015;163:409–16.

    Article  Google Scholar 

  7. Kuriya B, Tia V, Luo J, Widdifield J, Vigod S, Haroon N. Acute mental health service use is increased in rheumatoid arthritis and ankylosing spondylitis: a population-based cohort study. Therapeutic Advances in Musculoskeletal Disease [Internet]. SAGE Publications; 2020;12:1759720X20921710. Available from: https://doi.org/10.1177/1759720X20921710

  8. Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study. Annals of the Rheumatic Diseases [Internet]. 2021;80:1004. Available from: http://ard.bmj.com/content/80/8/1004.abstract

  9. Genovese MC, Fleischmann R, Combe B, Hall S, Rubbert-Roth A, Zhang Y, et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. The Lancet [Internet]. Elsevier; 2018;391:2513–24. Available from: https://doi.org/10.1016/S0140-6736(18)31116-4

  10. Wei JC-C, Kim T-H, Kishimoto M, Ogusu N, Jeong H, Kobayashi S, et al. Efficacy and safety of brodalumab, an anti-IL17RA monoclonal antibody, in patients with axial spondyloarthritis: 16-week results from a randomised, placebo-controlled, phase 3 trial. Ann Rheum Dis. 2021;

  11. ClinicalTrials.gov. A study to evaluate the efficacy and safety of bimekizumab in subjects with active nonradiographic axial spondyloarthritis (BE MOBILE 1). 2021.

  12. Macfarlane GJ, Pathan E, Jones GT, Dean LE. Predicting response to anti-TNFα therapy among patients with axial spondyloarthritis (axSpA): results from BSRBR-AS. Rheumatology (Oxford). 2020;59:2481–90.

    Article  Google Scholar 

  13. Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022;18:205–16.

    Article  PubMed  Google Scholar 

  14. Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol United States. 2019;15:427–37.

    Article  Google Scholar 

  15. Greven D, Leng L, Bucala R. Autoimmune diseases: MIF as a therapeutic target. Expert Opin Ther Targets England. 2010;14:253–64.

    Article  CAS  Google Scholar 

  16. Bae S-C, Lee YH. Associations between circulating macrophage migration inhibitory factor (MIF) levels and rheumatoid arthritis, and between MIF gene polymorphisms and disease susceptibility: a meta-analysis. Postgrad Med J. 2018;94:109–15.

    Article  CAS  PubMed  Google Scholar 

  17. Sreih A, Ezzeddine R, Leng L, LaChance A, Yu G, Mizue Y, et al. Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus. Arthritis Rheum. 2011;63:3942–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim H-R, Park M-K, Cho M-L, Yoon C-H, Lee S-H, Park S-H, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol. 2007;34:927–36.

    CAS  PubMed  Google Scholar 

  19. Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis & Rheumatism [Internet]. John Wiley & Sons, Ltd; 2003;48:1881–9. Available from: https://doi.org/10.1002/art.11165

  20. Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem. 2002;277:7865–74.

  21. Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol. 2006;177:5687–96.

    Article  CAS  PubMed  Google Scholar 

  22. Gürel Ç, İnanır A, Nursal AF, Tekcan A, Rüstemoğlu A, Yigit S. Evaluation of MIF -173 G/C polymorphism in Turkish patients with ankylosing spondylitis. Balkan Med J. 2016;33:614–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ranganathan V, Ciccia F, Zeng F, Sari I, Guggino G, Muralitharan J, et al. Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis. Arthritis and Rheumatology. 2017;69(9):1796–806.

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura A, Zeng F, Nakamura S, Reid KT, Gracey E, Lim M, et al. Macrophage migration inhibitory factor drives pathology in a mouse model of spondyloarthritis and is associated with human disease. Sci Transl Med. 2021;13:eabg1210.

  26. Rahman MA, Thomas R. The SKG model of spondyloarthritis. Best Pract Res Clin Rheumatol Netherlands. 2017;31:895–909.

    Article  Google Scholar 

  27. Rich AR, Lewis MR. The nature of allergy in tuberculosis at revealed by tissue culture studies. Bull Johns Hopkins Hosp. 1932;50:115–31.

    Google Scholar 

  28. Goldberg LS, Louie JS, Baker MH. Inhibition of macrophage migration: a test system using human monocytes. J Immunol. 1971;107:906–9.

    CAS  PubMed  Google Scholar 

  29. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3:791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc Natl Acad Sci U S A. 2011;108:E577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tilstam PV, Schulte W, Holowka T, Kim B-S, Nouws J, Sauler M, et al. MIF but not MIF-2 recruits inflammatory macrophages in an experimental polymicrobial sepsis model. J Clin Invest. 2021;131(23):e127171. https://doi.org/10.1172/JCI127171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donn R, Alourfi Z, de Benedetti F, Meazza C, Zeggini E, Lunt M, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:2402–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wu S-P, Leng L, Feng Z, Liu N, Zhao H, McDonald C, et al. Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum. 2006;54:3661–9.

    Article  CAS  PubMed  Google Scholar 

  34. Llamas-Covarrubias MA, Valle Y, Bucala R, Navarro-Hernández RE, Palafox-Sánchez CA, Padilla-Gutiérrez JR, et al. Macrophage migration inhibitory factor (MIF): genetic evidence for participation in early onset and early stage rheumatoid arthritis. Cytokine. 2013;61:759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, et al. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun. 2002;3:170–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wang F-F, Zhu L-A, Zou Y-Q, Zheng H, Wilson A, Yang C-D, et al. New insights into the role and mechanism of macrophage migration inhibitory factor in steroid-resistant patients with systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eder L, Chandran V, Ueng J, Bhella S, Lee K-A, Rahman P, et al. Predictors of response to intra-articular steroid injection in psoriatic arthritis. Rheumatology (Oxford). 2010;49:1367–73.

    Article  Google Scholar 

  38. Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal England. 2019;57:76–88.

    Article  CAS  Google Scholar 

  39. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13:587–96.

    Article  CAS  PubMed  Google Scholar 

  40. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui AA, Saha SJ, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Onodera S, Tanji H, Suzuki K, Kaneda K, Mizue Y, Sagawa A, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine. 1999;11:163–7.

    Article  CAS  PubMed  Google Scholar 

  42. Meazza C, Travaglino P, Pignatti P, Magni-Manzoni S, Ravelli A, Martini A, et al. Macrophage migration inhibitory factor in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:232–7.

    Article  PubMed  Google Scholar 

  43. de Jong YP, Abadia-Molina AC, Satoskar AR, Clarke K, Rietdijk ST, Faubion WA, et al. Development of chronic colitis is dependent on the cytokine MIF. Nat Immunol. 2001;2:1061–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kozaci LD, Sari I, Alacacioglu A, Akar S, Akkoc N. Evaluation of inflammation and oxidative stress in ankylosing spondylitis: a role for macrophage migration inhibitory factor. Mod Rheumatol. 2010;20:34–9.

    Article  CAS  PubMed  Google Scholar 

  45. Park M-C, Kwon OC, Lee S-W, Song JJ, Park Y-B. MiR-451 suppresses inflammatory responses in ankylosing spondylitis by targeting macrophage migration inhibitory factor. Clin Exp Rheumatol. 2020;38(2):275–81.

    Article  PubMed  Google Scholar 

  46. Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, et al. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis England. 2014;73:1211–4.

    Article  CAS  Google Scholar 

  47. Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis England. 2014;73:1079–82.

    Article  CAS  Google Scholar 

  48. Riechers E, Baerlecken N, Baraliakos X, Achilles-Mehr Bakhsh K, Aries P, Bannert B, et al. Sensitivity and specificity of autoantibodies against CD74 in nonradiographic axial spondyloarthritis. Arthritis Rheumatol United States. 2019;71:729–35.

    Article  CAS  Google Scholar 

  49. Hu C-J, Li M-T, Li X, Peng L-Y, Zhang S-Z, Leng X-M, et al. CD74 auto-antibodies display little clinical value in Chinese Han population with axial spondyloarthritis. Medicine. 2020;99: e23433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu M, Xie Z, Sun G, Chen L, Qi D, Zhang H, et al. Macrophage migration inhibitory factor may play a protective role in osteoarthritis. Arthritis Res Ther. 2021;23:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, et al. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med. 2018; 10.aan4886.

  52. Kitayama S, Onodera S, Kondo E, Kobayashi T, Miyatake S, Kitamura N, et al. Deficiency of macrophage migration inhibitory factor gene delays healing of the medial collateral ligament: a biomechanical and biological study. J Biomech. 2011;44:494–500.

    Article  PubMed  Google Scholar 

  53. Schett G, Lories RJ, D’Agostino M-A, Elewaut D, Kirkham B, Soriano ER, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol United States. 2017;13:731–41.

    Article  CAS  Google Scholar 

  54. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med United States. 2012;18:1069–76.

    CAS  Google Scholar 

  55. Kim D-H, Noh S-U, Chae S-W, Kim S-J, Lee Y-T. Altered differentiation of tendon-derived stem cells in diabetic conditions mediated by macrophage migration inhibitory factor. Int J Mol Sci. 2021;22(16):8983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Akbar M, MacDonald L, Crowe LAN, Carlberg K, Kurowska-Stolarska M, Ståhl PL, et al. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann Rheum Dis. 2021;80(11):1494–7. This study found tenocyte MIF upregulation in tendinopathy, as well as increase CD74 in macrophages within damaged tendon tissue.

    Article  CAS  PubMed  Google Scholar 

  57. Kim SJ, Song D-H, Kim SJ. Characteristics of tendon derived stem cells according to different factors to induce the tendinopathy. J Cell Physiol United States. 2018;233:6196–206.

    Article  CAS  Google Scholar 

  58. Stojanović I, Cvjetićanin T, Lazaroski S, Stosić-Grujicić S, Miljković D. Macrophage migration inhibitory factor stimulates interleukin-17 expression and production in lymph node cells. Immunology. 2009;126:74–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Y, Cai B, Ren C, Xu H, Du W, Wu Y, et al. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ. 2021;9: e12125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. •• Yu T, Zhang J, Zhu W, Wang X, Bai Y, Feng B, et al. Chondrogenesis mediates progression of ankylosing spondylitis through heterotopic ossification. Bone Res. 2021;9:19. This study firmly shows that endochondral ossification is one of the central process of new bone formation in axSpA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujihara Y, Hikita A, Takato T, Hoshi K. Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J Cell Physiol United States. 2018;233:1490–9.

    Article  CAS  Google Scholar 

  63. • Deng M, Tan J, Dai Q, Luo F, Xu J. Macrophage-mediated bone formation in scaffolds modified with MSC-derived extracellular matrix is dependent on the migration inhibitory factor signaling pathway. Front Cell Dev Biol. 2021;9: 714011. This study identified macrophage-derived MIF as a regulatory cytokine in osteogenesis using cartilage implants.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jacquin C, Koczon-Jaremko B, Aguila HL, Leng L, Bucala R, Kuchel GA, et al. Macrophage migration inhibitory factor inhibits osteoclastogenesis. Bone. 2009;45:640–9.

    Article  CAS  PubMed  Google Scholar 

  65. Mun SH, Won HY, Hernandez P, Aguila HL, Lee S-K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J Bone Miner Res. 2013;28:948–59.

    Article  CAS  PubMed  Google Scholar 

  66. Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, et al. Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res. 2006;21:876–85.

    Article  CAS  PubMed  Google Scholar 

  67. Zheng L, Gao J, Jin K, Chen Z, Yu W, Zhu K, et al. Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP suppresses osteoclast formation and promotes osteoblast differentiation through the inhibition of the NF-κB signaling pathway. FASEB J. 2019;33:7667–83.

    Article  CAS  PubMed  Google Scholar 

  68. Christodoulou-Vafeiadou E, Geka C, Ntari L, Kranidioti K, Argyropoulou E, Meier F, et al. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res Ther. 2020;22:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kopylov U, Starr M, Watts C, Dionne S, Girardin M, Seidman EG. Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study. J Rheumatol. 2018;45:498–505.

    Article  CAS  PubMed  Google Scholar 

  70. Mielants H, Veys EM, Cuvelier C, de Vos M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27(Suppl 2):95–105.

    Article  PubMed  Google Scholar 

  71. van Praet L, van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72:414–7.

    Article  PubMed  Google Scholar 

  72. Oliver J, Márquez A, Gómez-Garcia M, Martinez A, Mendoza JL, Vilchez JR, et al. Association of the macrophage migration inhibitory factor gene polymorphisms with inflammatory bowel disease. Gut. 2007;56:150–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen Y, Guo S, Yang T, Jia L, Chen L, An J, et al. The -173 G/C polymorphism of the MIF gene and inflammatory bowel disease risk: a meta-analysis. Int J Mol Sci. 2013;14:11392–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yang J, Li Y, Zhang X. Meta-analysis of macrophage migration inhibitory factor (MIF) gene -173G/C polymorphism and inflammatory bowel disease (IBD) risk. Int J Clin Exp Med. 2015;8:9570–4.

    PubMed  PubMed Central  Google Scholar 

  75. Singh UP, Singh NP, Murphy EA, Price RL, Fayad R, Nagarkatti M, et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. 2016;77:44–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ohkawara T, Miyashita K, Nishihira J, Mitsuyama K, Takeda H, Kato M, et al. Transgenic over-expression of macrophage migration inhibitory factor renders mice markedly more susceptible to experimental colitis. Clin Exp Immunol. 2005;140:241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohkawara T, Mitsuyama K, Takeda H, Asaka M, Fujiyama Y, Nishihira J. Lack of macrophage migration inhibitory factor suppresses innate immune response in murine dextran sulfate sodium-induced colitis. Scand J Gastroenterol. 2008;43:1497–504.

    Article  CAS  PubMed  Google Scholar 

  78. Ohkawara T, Nishihira J, Takeda H, Hige S, Kato M, Sugiyama T, et al. Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice. Gastroenterology. 2002;123:256–70.

    Article  CAS  PubMed  Google Scholar 

  79. Farr L, Ghosh S, Jiang N, Watanabe K, Parlak M, Bucala R, et al. CD74 Signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing. Cell Mol Gastroenterol Hepatol. 2020;10:101–12.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vujicic M, Saksida T, Despotovic S, Bajic SS, Lalić I, Koprivica I, et al. The role of macrophage migration inhibitory factor in the function of intestinal barrier. Sci Rep. 2018;8:6337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Stolwijk C, van Tubergen A, Castillo-Ortiz JD, Boonen A. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:65–73.

    Article  PubMed  Google Scholar 

  82. Gómez RS, Diepgen TL, Neumann C, Sorg C. Detection of migration inhibitory factor (MIF) by a monoclonal antibody in the microvasculature of inflamed skin. Arch Dermatol Res. 1990;282:374–8.

    Article  PubMed  Google Scholar 

  83. Shimizu T, Nishihira J, Mizue Y, Nakamura H, Abe R, Watanabe H, et al. High macrophage migration inhibitory factor (MIF) serum levels associated with extended psoriasis. J Invest Dermatol. 2001;116:989–90.

    Article  CAS  PubMed  Google Scholar 

  84. Steinhoff M, Meinhardt A, Steinhoff A, Gemsa D, Bucala R, Bacher M. Evidence for a role of macrophage migration inhibitory factor in psoriatic skin disease. Br J Dermatol. 1999;141:1061–6.

    Article  CAS  PubMed  Google Scholar 

  85. Donn RP, Plant D, Jury F, Richards HL, Worthington J, Ray DW, et al. Macrophage migration inhibitory factor gene polymorphism is associated with psoriasis. J Invest Dermatol. 2004;123:484–7.

    Article  CAS  PubMed  Google Scholar 

  86. Bezdek S, Leng L, Busch H, Mousavi S, Rades D, Dahlke M, et al. Macrophage migration inhibitory factor (MIF) drives murine Psoriasiform dermatitis. Front Immunol. 2018;9:2262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Abe R, Shimizu T, Ohkawara A, Nishihira J. Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochim Biophys Acta. 2000;1500:1–9.

    Article  CAS  PubMed  Google Scholar 

  88. Hsieh C-Y, Chen C-L, Lin Y-S, Yeh T-M, Tsai T-T, Hong M-Y, et al. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. J Immunol. 2014;193:3693–703.

    Article  CAS  PubMed  Google Scholar 

  89. Kitaichi N, Kotake S, Sasamoto Y, Namba K, Matsuda A, Ogasawara K, et al. Prominent increase of macrophage migration inhibitory factor in the sera of patients with uveitis. Invest Ophthalmol Vis Sci. 1999;40:247–50.

    CAS  PubMed  Google Scholar 

  90. Taguchi C, Sugita S, Tagawa Y, Nishihira J, Mochizuki M. Macrophage migration inhibitory factor in ocular fluids of patients with uveitis. Br J Ophthalmol. 2001;85:1367–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang C, Liu S, Hou S, Lei B, Zheng X, Xiao X, et al. MIF gene polymorphisms confer susceptibility to Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Invest Ophthalmol Vis Sci. 2013;54:7734–8.

    Article  CAS  PubMed  Google Scholar 

  92. Nursal AF, Yigit S, Tural E, Kalkan G, Tumer MK, Tekcan A. Macrophage migration inhibitory factor −173GC variant might increase the risk of Behçet’s disease. Med Princ Pract. 2018;27:285–9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zheng X, Wang D, Hou S, Zhang C, Lei B, Xiao X, et al. Association of macrophage migration inhibitory factor gene polymorphisms with Behçet’s disease in a Han Chinese population. Ophthalmology. 2012;119:2514–8.

    Article  PubMed  Google Scholar 

  94. Yang H, Zheng S, Mao Y, Chen Z, Zheng C, Li H, et al. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol. 2016;183:280–93.

    Article  CAS  PubMed  Google Scholar 

  95. Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, et al. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell England. 2021;20(5):e13328.

    CAS  Google Scholar 

  96. •• Mahalingam D, Patel MR, Sachdev JC, Hart LL, Halama N, Ramanathan RK, et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br J Clin Pharmacol. 2020;86:1836–48. This trial shows that MIF antagonism yields a desirable safety profile in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. •• Wallace DJ, Figueras F, Wegener WA, Goldenberg DM. Experience with milatuzumab, an anti-CD74 antibody against immunomodulatory macrophage migration inhibitory factor (MIF) receptor, for systemic lupus erythematosus (SLE). Ann Rheum Dis. 2021;80:954–5. This trial shows that monoclonal antibody against CD74 is effective for a sizable proportion of SLE patients and well-tolerable.

    Article  PubMed  Google Scholar 

  98. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol United States. 2014;15:602–11.

    Article  CAS  Google Scholar 

  99. Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The neutrophil Immunity United States. 2021;54:1377–91.

    CAS  Google Scholar 

  100. Tabrizi ZA, Khosrojerdi A, Aslani S, Hemmatzadeh M, Babaie F, Bairami A, et al. Multi-facets of neutrophil extracellular trap in infectious diseases: moving beyond immunity. Microb Pathog, England. 2021;158:105066.

    Article  CAS  Google Scholar 

  101. Freemont AJ, Denton J. Disease distribution of synovial fluid mast cells and cytophagocytic mononuclear cells in inflammatory arthritis. Ann Rheum Dis. 1985;44:312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, et al. Proteolysis targeting chimera (PROTAC) for macrophage migration inhibitory factor (MIF) has anti-proliferative activity in lung cancer cells. Angew Chem Int Ed Engl. 2021;60:17514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Nakamura.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spondyloarthritis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Nakamura, A. Deep Insight into the Role of MIF in Spondyloarthritis. Curr Rheumatol Rep 24, 269–278 (2022). https://doi.org/10.1007/s11926-022-01081-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-022-01081-7

Keywords

Navigation