Skip to main content

Advertisement

Log in

Update on Biomarkers of Vasculopathy in Juvenile and Adult Myositis

  • Inflammatory Muscle Disease (L Diederichsen and H Chinoy, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although rare, idiopathic inflammatory myopathies (IIM) comprise a heterogeneous group of autoimmune conditions in adults and children. Increasingly, vasculopathy is recognised to be key in the underlying pathophysiology and plays a crucial role in some of the more challenging complications including calcinosis, gastrointestinal involvement and interstitial lung disease. The exciting prospect of development of biomarkers of vasculopathy would enable earlier detection and monitoring of these complications and possible prevention of their potentially devastating consequences. The purpose was to review the current literature on biomarkers of vasculopathy in IIM and offer insight as to the biomarkers most likely to have an impact on clinical care.

Recent Findings

Multiple candidate biomarkers have been studied including circulating endothelial cells (CEC), microparticles (MP), soluble adhesion markers (ICAM-1, ICAM-3, VCAM-1), selectin proteins (E-, L-, P-selectin), coagulation factors, angiogenic factors, cytokines (including (IL-6, IL-10, TNF-α, IL-18) and interferon (IFN)-related biomarkers (including IFNα, IFN-β, IFNγ, galectin-9, interferon signature and interferon-related chemokines (MCP-1, IP-10 and MIG). There is a growing body of evidence of the potential role of biomarkers in detecting and monitoring the vasculopathy in IIM, detecting disease activity and predicting disease flares and overall prognosis.

Summary

Exciting progress has been made in the search for biomarkers of vasculopathy of IIM; however, none of the studies are validated and further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Meyer A, Meyer N, Schaeffer M, Gottenberg J-E, Geny B, Sibilia J. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology. 2015;54(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  2. Lundberg IE, Miller FW, Tjärnlund A, Bottai M. Diagnosis and classification of idiopathic inflammatory myopathies. J Intern Med. 2016;280(1):39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCann LJ, Juggins AD, Maillard SM, Wedderburn LR, Davidson JE, Murray KJ, et al. The Juvenile Dermatomyositis National Registry and Repository (UK and Ireland)—clinical characteristics of children recruited within the first 5 yr. Rheumatology. 2006;45(10):1255–60.

    Article  CAS  PubMed  Google Scholar 

  4. Vincze M, Danko K. Idiopathic inflammatory myopathies. Best Pract Res Clin Rheumatol. 2012;26(1):25.

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi N, Takezaki S, Kobayashi I, Iwata N, Mori M, Nagai K, et al. Clinical and laboratory features of fatal rapidly progressive interstitial lung disease associated with juvenile dermatomyositis. Rheumatology (Oxford, England). 2015;54(5):784–91.

    Article  CAS  Google Scholar 

  6. Gitiaux C, De Antonio M, Aouizerate J, Gherardi RK, Guilbert T, Barnerias C, et al. Vasculopathy-related clinical and pathological features are associated with severe juvenile dermatomyositis. Rheumatology. 2016;55(3):470–9.

    PubMed  Google Scholar 

  7. Papadopoulou C, McCann LJ. The vasculopathy of juvenile dermatomyositis. Front Pediatr. 2018;6:284.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miller FW, Oddis CV. Vasculitis in the idiopathic inflammatory myopathies. In: In: Inflammatory Diseases of Blood Vessels [Internet]. Hoboken: John Wiley & Sons, Ltd. p. 433–40. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118355244.ch39.

  9. Lilleker JB, Vencovsky J, Wang G, Wedderburn LR, Diederichsen LP, Schmidt J, et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis 2017/08/30 ed. 2018;77(1):30–9.

    Article  PubMed  Google Scholar 

  10. Wedderburn LR, Rider LG. Juvenile dermatomyositis: new developments in pathogenesis, assessment and treatment. Best Pract Res Clin Rheumatol. 2009;23(5):665–78.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wienke J, Deakin CT, Wedderburn LR, van Wijk F, van Royen-Kerkhof A. Systemic and tissue inflammation in juvenile dermatomyositis: from pathogenesis to the quest for monitoring tools. Front Immunol. 2018;9:2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stenzel W, Goebel H-H, Bader-Meunier B, Gitiaux C. Inflammatory myopathies in childhood. Neuromusc Disorders : NMD. 2021;31(10):1051–61.

    Article  PubMed  Google Scholar 

  13. Wedderburn LR, Varsani H, Li CKC, Newton KR, Amato AA, Banwell B, et al. International consensus on a proposed score system for muscle biopsy evaluation in patients with juvenile dermatomyositis: a tool for potential use in clinical trials. Arthritis Care Res. 2007;57(7):1192–201.

    Article  Google Scholar 

  14. Smith RL, Sundberg J, Shamiyah E, Dyer A, Pachman LM. Skin involvement in juvenile dermatomyositis is associated with loss of end row nailfold capillary loops. J Rheumatol. 2004;31(8):1644–9.

    PubMed  Google Scholar 

  15. • Papadopoulou C, Hong Y, Krol P, Obaidi M, Pilkington C, Wedderburn L, et al. The vasculopathy of juvenile dermatomyositis: endothelial injury, hypercoagulability, and increased arterial stiffness. Arthritis Rheum. 2021;73:1253–66 CEC, MP, cytokines and chemokines assessed in children with JDM and control populations. CEC and MP levels were elevated in JDM patients compared to healthy controls; CEC levels were increased in patients with active compared to inactive JDM. Galectin-9 was elevated in patients with active disease compared to inactive and this correlated with CEC level.

    Article  CAS  Google Scholar 

  16. • Kishi T, Chipman J, Evereklian M, Nghiem K, Stetler-Stevenson M, Rick ME, et al. Endothelial activation markers as disease activity and damage measures in juvenile dermatomyositis. J Rheumatol. 2020;47. https://doi.org/10.3899/jrheum.181275. Various important biomarkers analysed including CEC, vWF, P-selectin and thrombomodulin in children with JDM. These markers were correlated with disease activity. Key findings showed that CEC, vWF were increased in peripheral blood of JDM patients; vWF and P-selectin were not. CEC levels correlated with pulmonary disease activity.

  17. Baka Z, Senolt L, Vencovsky J, Mann H, Simon PS, Kittel Á, et al. Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis. Immunol Lett. 2010;128(2):124–30.

    Article  CAS  PubMed  Google Scholar 

  18. Shirafuji T, Hamaguchi H, Higuchi M, Kanda F. Measurement of platelet-derived microparticle levels using an enzyme-linked immunosorbent assay in polymyositis and dermatomyositis patients. Muscle Nerve. 2009;39(5):586–90.

    Article  CAS  PubMed  Google Scholar 

  19. Oyabu C, Morinobu A, Sugiyama D, Saegusa J, Tanaka S, Morinobu S, et al. Plasma platelet-derived microparticles in patients with connective tissue diseases. J Rheumatol. 2011;38(4):680.

    Article  PubMed  Google Scholar 

  20. Notarnicola A, Barsotti S, Näsman L, Tang Q, Holmqvist M, Lundberg I, et al. Evaluation of risk factors and biomarkers related to arterial and venous thrombotic events in idiopathic inflammatory myopathies. Scand J Rheumatol. 2021;50(5):390–7. https://doi.org/10.1080/03009742.2020.1861647.

    Article  CAS  PubMed  Google Scholar 

  21. Kumamoto T, Abe T, Ueyama H, Sugihara R, Shigenaga T, Tsuda T. Elevated soluble intercellular adhesion molecules-1 in inflammatory myopathy. Acta Neurol Scand. 1997;95(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  22. Figarella-Branger D, Schleinitz N, Boutière-Albanèse B, Camoin L, Bardin N, Guis S, et al. Platelet-endothelial cell adhesion molecule-1 and CD146: soluble levels and in situ expression of cellular adhesion molecules implicated in the cohesion of endothelial cells in idiopathic inflammatory myopathies. J Rheumatol. 2006;33(8):1623.

    CAS  PubMed  Google Scholar 

  23. Wienke J, Pachman LM, Morgan GA, Yeo JG, Amoruso MC, Hans V, et al. Endothelial and inflammation biomarker profiles at diagnosis reflecting clinical heterogeneity and serving as a prognostic tool for treatment response in two independent cohorts of patients with juvenile dermatomyositis. Arthritis Rheum. 2020;72(7):1214–26.

    Article  CAS  Google Scholar 

  24. Bloom BJ, Miller LC, Blier PR. Soluble adhesion molecules in pediatric rheumatic diseases. J Rheumatol. 2002;29(4):832.

    CAS  PubMed  Google Scholar 

  25. Limaye VS, Bonder CS, Sun WY, Lester S, Roberts-Thomson PJ, Blumbergs P. Levels of soluble adhesion molecules and their associations in inflammatory myositis. Int J Rheum Dis. 2013;16(1):99–101.

    Article  CAS  PubMed  Google Scholar 

  26. Kubo M, Ihn H, Yamane K, Yazawa N, Kikuchi K, Soma Y, et al. Increased serum levels of soluble vascular cell adhesion molecule-1 and soluble E-selectin in patients with polymyositis/dermatomyositis. Br J Dermatol. 2000;143(2):392–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kim E, Cook-Mills J, Morgan G, Sredni ST, Pachman LM. Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126. Arthritis Rheum. 2012;64(11):3809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komiya T, Negoro N, Kondo K, Miura K, Hirota Y, Yoshikawa J. Clinical significance of von Willebrand factor in patients with adult dermatomyositis. Clin Rheumatol. 2005;24(4):352–7.

    Article  PubMed  Google Scholar 

  29. Funauchi M, Shimadsu H, Tamaki C, Yamagata T, Nozaki Y, Sugiyama M, et al. Role of endothelial damage in the pathogenesis of interstitial pneumonitis in patients with polymyositis and dermatomyositis. J Rheumatol. 2006;33(5):903.

    PubMed  Google Scholar 

  30. Scott JP, Arroyave C. Activation of complement and coagulation in juvenile dermatomyositis. Arthritis Rheum. 1987;30(5):572–6.

    Article  CAS  PubMed  Google Scholar 

  31. Chai K-X, Chen Y-Q, Fan P-L, Yang J, Yuan X. STROBE: The correlation of Cyr61, CTGF, and VEGF with polymyositis/dermatomyositis. Medicine (Baltimore). 2018;97(34):e11775.

    Article  CAS  Google Scholar 

  32. Silva T, Silva M, Shinjo S. Relevance of serum angiogenic cytokines in adult patients with dermatomyositis. Adv Rheumatol. 2018;58:17.

    Article  PubMed  Google Scholar 

  33. Szodoray P, Alex P, Knowlton N, Centola M, Dozmorov I, Csipo I, et al. Idiopathic inflammatory myopathies, signified by distinctive peripheral cytokines, chemokines and the TNF family members B-cell activating factor and a proliferation inducing ligand. Rheumatology (Oxford). 2010/06/29 ed. 2010;49(10)):1867–77.

    Article  CAS  Google Scholar 

  34. Tawalbeh SM, Marin W, Morgan GA, Dang UJ, Hathout Y, Pachman LM. Serum protein biomarkers for juvenile dermatomyositis: a pilot study. BMC Rheumatol. 2020;4:52.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liao AP, Salajegheh M, Nazareno R, Kagan JC, Jubin RG, Greenberg SA. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis. 2011;70(5):831.

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Quan C, Diao L, Xue F, Xue K, Wang B, et al. Measurement of cytokines and chemokines and association with clinical severity of dermatomyositis and clinically amyopathic dermatomyositis. Br J Dermatol. 2018;179(6):1334–41.

    Article  CAS  PubMed  Google Scholar 

  37. Gono T, Kaneko H, Kawaguchi Y, Hanaoka M, Kataoka S, Kuwana M, et al. Cytokine profiles in polymyositis and dermatomyositis complicated by rapidly progressive or chronic interstitial lung disease. Rheumatology. 2014;53(12):2196–203.

    Article  CAS  PubMed  Google Scholar 

  38. Melki I, Devilliers H, Gitiaux C, Bondet V, Belot A, Bodemer C, et al. Circulating Interferon-α measured with a highly sensitive assay as a biomarker for juvenile inflammatory myositis activity: comment on the article by Mathian et al. Arthritis Rrheumatol (Hoboken, NJ). 2020;72(1):195–7.

    Google Scholar 

  39. Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med 2017/04/18 ed. 2017;214(5):1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM. Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum. 2009;60(6):1815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greenberg SA, Higgs BW, Morehouse C, Walsh RJ, Won Kong S, Brohawn P, et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun. 2012;13(3):207–13.

    Article  CAS  PubMed  Google Scholar 

  42. Walsh RJ, Kong SW, Yao Y, Jallal B, Kiener PA, Pinkus JL, et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 2007;56(11):3784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rigolet M, Hou C, Amer Y, Aouizerate J, Periou B, Gherardi R, et al. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. RMD Open. 2019;5:e000811.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med. 2007;13(1–2):59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reed AM, Peterson E, Bilgic H, Ytterberg SR, Amin S, Hein MS, et al. Changes in novel biomarkers of disease activity in juvenile and adult dermatomyositis are sensitive biomarkers of disease course. Arthritis Rheum. 2012;64(12):4078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, et al. Interleukin-6 and type I interferon–regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 2009;60(11):3436–46.

    Article  CAS  PubMed  Google Scholar 

  47. Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, et al. CD19(+)CD24(hi)CD38(hi) B cells are expanded in juvenile dermatomyositis and exhibit a pro-inflammatory phenotype after activation through toll-like receptor 7 and interferon-α. Front Immunol. 2018;9:1372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. • Wienke J, Bellutti Enders F, Lim J, Mertens JS, van den Hoogen LL, Wijngaarde CA, et al. Galectin-9 and CXCL10 as biomarkers for disease activity in juvenile dermatomyositis: a Longitudinal Cohort Study and Multicohort Validation. Arthritis Rrheumatol (Hoboken, NJ). 2019;71(8):1377–90 Elevated galectin-9 and CXCL-10 in patients with active JDM compared to patients with inactive disease, levels of these biomarkers rose prior to a flare of the JDM. These biomarkers were also elevated in adult patients with active IIM compared to inactive disease.

    CAS  Google Scholar 

  49. Bellutti Enders F, van Wijk F, Scholman R, Hofer M, Prakken BJ, van Royen-Kerkhof A, et al. Correlation of CXCL10, tumor necrosis factor receptor type II, and Galectin 9 with disease activity in juvenile dermatomyositis. Arthritis Rheum. 2014;66(8):2281–9.

    Article  CAS  Google Scholar 

  50. Matsuda S, Kotani T, Ishida T, Fukui K, Fujiki Y, Suzuka T, et al. Exploration of pathomechanism using comprehensive analysis of serum cytokines in polymyositis/dermatomyositis-interstitial lung disease. Rheumatology. 2020;59(2):310–8.

    Article  CAS  PubMed  Google Scholar 

  51. Bai J, Wu C, Zhong D, Xu D, Wang Q, Zeng X. Hierarchical cluster analysis of cytokine profiles reveals a cutaneous vasculitis-associated subgroup in dermatomyositis. Clin Rheumatol. 2021;40(3):999–1008.

    Article  PubMed  Google Scholar 

  52. Sanner H, Schwartz T, Flatø B, Vistnes M, Christensen G, Sjaastad I. Increased levels of eotaxin and MCP-1 in juvenile dermatomyositis median 16.8 years after disease onset; associations with disease activity, duration and organ damage. PLoS One. 2014;9(3):e92171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Crowson CS, Hein MS, Pendegraft RS, Strausbauch MA, Niewold TB, Ernste FC, et al. Interferon Chemokine score and other cytokine measures track with changes in disease activity in patients with juvenile and adult dermatomyositis. ACR Open Rheumatol. 2019;1(2):83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marstein H, Schwartz T, Aaløkken M, Lund M, Flatø B, Sjaastad I, et al. Novel associations between cytokines and pulmonary involvement in juvenile dermatomyositis - a cross-sectional study of long-term disease. Rheumatology (Oxford, England). 2019;18:59.

    Google Scholar 

  55. Xu D, Huang C-C, Kachaochana A, Morgan GA, Bonaldo MF, Soares MB, et al. MicroRNA-10a regulation of proinflammatory mediators: an important component of untreated juvenile dermatomyositis. J Rheumatol. 2016;43(1):161.

    Article  CAS  PubMed  Google Scholar 

  56. Wu H, Chen H, Hu P. Circulating endothelial cells and endothelial progenitors as surrogate biomarkers in vascular dysfunction. Clin Lab. 2007;53:285–95.

    PubMed  Google Scholar 

  57. Blann A, Woywodt A, Bertolini F, Bull T, Buyon J, Clancy R, et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost. 2005;93:228–35.

    Article  CAS  PubMed  Google Scholar 

  58. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med. 2009;13(3):454–71.

    Article  CAS  PubMed  Google Scholar 

  59. Clarke LA, Hong Y, Eleftheriou D, Shah V, Arrigoni F, Klein NJ, et al. Endothelial injury and repair in systemic vasculitis of the young. Arthritis Rheum. 2010;62(6):1770–80.

    Article  CAS  PubMed  Google Scholar 

  60. Clancy RM. Circulating endothelial cells and vascular injury in systemic lupus erythematosus. Curr Rheumatol Rep. 2000;2(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  61. Woywodt A, Streiber F, de Groot K, Regelsberger H, Haller H, Haubitz M. Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet (British edition). 2003;361(9353):206–10.

    CAS  Google Scholar 

  62. Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 2014;21(3):224–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morel O, Jesel L, Freyssinet J-M, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol. 2011;31(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  64. Curtis AM, Edelberg J, Jonas R, Rogers WT, Moore JS, Syed W, et al. Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc Med. 2013;18(4):204–14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hugel B, Martínez MC, Kunzelmann C, Freyssinet J-M. Membrane microparticles: two sides of the coin. Physiology. 2005;20(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  66. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197(11):1585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katopodis JN, Kolodny L, Jy W, Horstman LL, De Marchena EJ, Tao JG, et al. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am J Hematol. 1997;54(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  68. Aird WC. Phenotypic heterogeneity of the endothelium. Circ Res. 2007;100(2):158–73.

    Article  CAS  PubMed  Google Scholar 

  69. Sallum AME, Marie SKN, Wakamatsu A, Sachetti S, Vianna MAAG, Silva CAA, et al. Immunohistochemical analysis of adhesion molecule expression on muscle biopsy specimens from patients with juvenile dermatomyositis. J Rheumatol. 2004;31(4):801.

    CAS  PubMed  Google Scholar 

  70. Bartoccioni E, Gallucci S, Scuderi F, Ricci E, Servidei S, Broccolini A, et al. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clin Exp Immunol. 1994;95(1):166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tews DS, Goebel HH. Expression of cell adhesion molecules in inflammatory myopathies. J Neuroimmunol. 1995;59(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  72. Jain A, Sharma CM, Sarkar C, Singh S, Handa R. Increased expression of cell adhesion molecules in inflammatory myopathies: diagnostic utility and pathogenetic insights. Folia Neuropathol. 2009;47(1):33–42.

    CAS  PubMed  Google Scholar 

  73. Carruthers EC, Choi HK, Sayre EC, Aviña-Zubieta JA. Risk of deep venous thrombosis and pulmonary embolism in individuals with polymyositis and dermatomyositis: a general population-based study. Ann Rheum Dis 2014/09/05 ed. 2016;75(1):110–6.

    Article  PubMed  Google Scholar 

  74. Wahezi D, Arena V, Choi J, Gao Q. The role of Von Willebrand factor as a disease biomarker in the clinical assessment of children with juvenile dermatomyositis [abstract]. Arthritis Rheumatol. 2016;68 (supple 10).

  75. Barnes TC, Anderson ME, Moots RJ. The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int J Rheumatol. 2011;2011:721608–6.

    PubMed  PubMed Central  Google Scholar 

  76. Wakiguchi H, Hasegawa S, Hirano R, Kaneyasu H, Wakabayashi-Takahara M, Ohga S. Successful control of juvenile dermatomyositis-associated macrophage activation syndrome and interstitial pneumonia: distinct kinetics of interleukin-6 and -18 levels. Pediatr Rheumatol Online J. 2015;13:49.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gitiaux C, Latroche C, Weiss-Gayet M, Rodero MP, Duffy D, Bader-Meunier B, et al. Myogenic progenitor cells exhibit type I interferon–driven proangiogenic properties and molecular signature during juvenile dermatomyositis. Arthritis Rheum. 2018;70(1):134–45.

    Article  CAS  Google Scholar 

  78. Ladislau L, Suárez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, et al. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain (London, England : 1878). 2018;141(6):1609–21.

    Google Scholar 

  79. Kim H. Updates on interferon in juvenile dermatomyositis: pathogenesis and therapy. Curr Opin Rheumatol. 2021;33(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  80. Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol. 2019;20(12):1574–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim H, Gunter-Rahman F, McGrath JA, Lee E, de Jesus AA, Targoff IN, et al. Expression of interferon-regulated genes in juvenile dermatomyositis versus Mendelian autoinflammatory interferonopathies. Arthritis Res Ther. 2020;22(1):69–12.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schwartz T, Sjaastad I, Flatø B, Vistnes M, Christensen G, Sanner H. In active juvenile dermatomyositis, elevated eotaxin and MCP-1 and cholesterol levels in the upper normal range are associated with cardiac dysfunction. Rheumatology. 2014;53(12):2214–22.

    Article  CAS  PubMed  Google Scholar 

  83. Wienke J, Mertens JS, Garcia S, Lim J, Wijngaarde CA, Yeo JG, et al. Biomarker profiles of endothelial activation and dysfunction in rare systemic autoimmune diseases: implications for cardiovascular risk. Rheumatology. 2021;60(2):785–801.

    Article  CAS  PubMed  Google Scholar 

  84. Lutz J, Huwiler KG, Fedczyna T, Lechman TS, Crawford S, Kinsella TR, et al. Increased plasma thrombospondin-1 (TSP-1) levels are associated with the TNFα-308A allele in children with juvenile dermatomyositis. Clin Immunol. 2002;103(3):260–3.

    Article  CAS  PubMed  Google Scholar 

  85. Pachman LM, Liotta-Davis MR, Hong DK, Kinsella TR, Mendez EP, Kinder JM, et al. TNFα-308A allele in juvenile dermatomyositis: association with increased production of tumor necrosis factor α, disease duration, and pathologic calcifications. Arthritis Rheum. 2000;43(10):2368–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsty McLellan.

Ethics declarations

Conflict of Interest

ChP has received speaker fees from Sobi and Consultancy fees from Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Inflammatory Muscle Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLellan, K., Papadopoulou, C. Update on Biomarkers of Vasculopathy in Juvenile and Adult Myositis. Curr Rheumatol Rep 24, 227–237 (2022). https://doi.org/10.1007/s11926-022-01076-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-022-01076-4

Keywords

Navigation