Skip to main content

Advertisement

Log in

Identification of Common Pathogenic Pathways Involved in Hemochromatosis Arthritis and Calcium Pyrophosphate Deposition Disease: a Review

  • Crystal Arthritis (M Pillinger, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Objectives

Arthritis is a common clinical manifestation of hereditary hemochromatosis (HH), and HH is one of a handful of conditions linked to calcium pyrophosphate deposition (CPPD) in joints. The connection between these two types of arthritis has not yet been fully elucidated. In light of new pathogenic pathways recently implicated in CPPD involving bone, we reviewed the literature on the etiology of hemochromatosis arthropathy (HHA) seeking shared pathogenic mechanisms.

Results

Clinical observations reinforce striking similarities between HHA and CPPD even in the absence of CPP crystals. They share a similar joint distribution, low grade synovial inflammation, and generalized bone loss. Excess iron damages chondrocytes and bone cells in vitro. While direct effects of iron on cartilage are not consistently seen in animal models of HH, there is decreased osteoblast alkaline phosphatase activity, and increased osteoclastogenesis. These abnormalities are also seen in CPPD. Joint repair processes may also be impaired in both CPPD and HHA.

Conclusions

Possible shared pathogenic pathways relate more to bone and abnormal damage/repair mechanisms than direct damage to articular cartilage. While additional work is necessary to fully understand the pathogenesis of arthritis in HH and to firmly establish causal links with CPPD, this review provides some plausible hypotheses explaining the overlap of these two forms of arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dymock IW, Hamilton EB, Laws JW, Williams R. Arthropathy of haemochromatosis. Clinical and radiological analysis of 63 patients with iron overload. Ann Rheum Dis. 1970;29(5):469–476.

  2. Nguyen CD, Morel V, Pierache A, Lion G, Cortet B, Flipo RM, et al. Bone and joint complications in patients with hereditary hemochromatosis: a cross-sectional study of 93 patients. Ther Adv Musculoskelet Dis. 2020;12:1759720x20939405.

  3. Schumacher HR Jr. Hemochromatosis and arthritis. Arthritis Rheum. 1964;7:41–50.

    Article  PubMed  Google Scholar 

  4. Frischknecht J, Steigerwald JC. High synovial fluid white blood cell counts in pseudogout: possible confusion with septic arthritis. Arch Intern Med. 1975;135(2):298–9.

    Article  Google Scholar 

  5. Martínez Sanchis A, Pascual E. Intracellular and extracellular CPPD crystals are a regular feature in synovial fluid from uninflamed joints of patients with CPPD related arthropathy. Ann Rheum Dis. 2005;64(12):1769–72.

    Article  PubMed  Google Scholar 

  6. Richette P, Eymard C, Deberg M, Vidaud D, de Kerguenec C, Valla D, et al. Increase in type II collagen turnover after iron depletion in patients with hereditary haemochromatosis. Rheumatology (Oxford, England). 2010;49(4):760–6.

    Article  CAS  Google Scholar 

  7. Sandhu K, Flintoff K, Chatfield MD, Dixon JL, Ramm LE, Ramm GA, et al. Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood. 2018;132(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  8. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int. 2005;16(12):1809–14.

    Article  CAS  PubMed  Google Scholar 

  9. Valenti L, Varenna M, Fracanzani AL, Rossi V, Fargion S, Sinigaglia L. Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos Int. 2009;20(4):549–55.

    Article  CAS  PubMed  Google Scholar 

  10. KleiberBalderrama C, Rosenthal AK, Lans D, Singh JA, Bartels CM. Calcium pyrophosphate deposition disease and associated medical comorbidities: a national cross-sectional study of US Veterans. Arthritis Care Res. 2017;69(9):1400–6.

    Article  CAS  Google Scholar 

  11. Abhishek A, Doherty M. Update on calcium pyrophosphate deposition. Clin Exp Rheumatol. 2016;34(4 Suppl 98):32–8.

    PubMed  Google Scholar 

  12. Pendleton A, Johnson MD, Hughes A, Gurley KA, Ho AM, Doherty M, et al. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet. 2002;71(4):933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mitton-Fitzgerald E, Gohr CM, Williams CJ, Ortiz A, Mbalaviele G, Rosenthal AK. Effects of the TNFRSF11B mutation associated with calcium pyrophosphate deposition disease in osteoclastogenesis in a murine model. Arthritis Rheumatol (Hoboken, NJ). 2021;73(8):1543–9.

    Article  CAS  Google Scholar 

  14. Williams CJ, Qazi U, Bernstein M, Charniak A, Gohr C, Mitton-Fitzgerald E, et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthr Cartil. 2018;26(6):797–806.

    Article  CAS  Google Scholar 

  15. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenthal AK, Cheung HS, Ryan LM. Transforming growth factor beta 1 stimulates inorganic pyrophosphate elaboration by porcine cartilage. Arthritis Rheum. 1991;34(7):904–11.

    Article  CAS  PubMed  Google Scholar 

  17. Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2020;80(4):413–22.

    Article  Google Scholar 

  18. Bertuglia A, Lacourt M, Girard C, Beauchamp G, Richard H, Laverty S. Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthr Cartil. 2016;24(3):555–66.

    Article  CAS  Google Scholar 

  19. Löfvall H, Newbould H, Karsdal MA, Dziegiel MH, Richter J, Henriksen K, et al. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res Ther. 2018;20(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johnson K, Terkeltaub R. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthr Cartil. 2004;12(4):321–35.

    Article  CAS  Google Scholar 

  21. Møller AMJ, Delaissé J-M, Olesen JB, Madsen JS, Canto LM, Bechmann T, et al. Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Res. 2020;8(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheng PT, Pritzker KP. Ferrous [Fe++] but not ferric [Fe] ions inhibit de novo formation of calcium pyrophosphate dihydrate crystals: possible relationships to chondrocalcinosis and hemochromatosis. J Rheumatol. 1988;15(2):321–4.

    CAS  PubMed  Google Scholar 

  23. Mandel GS, Halverson PB, Mandel NS. Calcium pyrophosphate crystal deposition: the effect of soluble iron in a kinetic study using a gelatin matrix model. Scan Microsc. 1988;2(2):1177–88.

    CAS  Google Scholar 

  24. Brighton CT, Bigley EC Jr, Smolenski BI. Iron-induced arthritis in immature rabbits. Arthritis Rheum. 1970;13(6):849–57.

    Article  CAS  PubMed  Google Scholar 

  25. Ryan LM, Kurup I, Rosenthal AK, McCarty DJ. Stimulation of inorganic pyrophosphate elaboration by cultured cartilage and chondrocytes. Arch Biochem Biophys. 1989;272(2):393–9.

    Article  CAS  PubMed  Google Scholar 

  26. Axford JS, Bomford A, Revell P, Watt I, Williams R, Hamilton EB. Hip arthropathy in genetic hemochromatosis. Radiographic and histologic features. Arthritis Rheum. 1991;34(3):357–361.

  27. Walker RJ, Dymock IW, Ansell ID, Hamilton EB, Williams R. Synovial biopsy in haemochromatosis arthropathy. Histological findings and iron deposition in relation to total body iron overload. Ann Rheum Dis. 1972;31(2):98–102.

  28. Faraawi R, Harth M, Kertesz A, Bell D. Arthritis in hemochromatosis. J Rheumatol. 1993;20(3):448–52.

    CAS  PubMed  Google Scholar 

  29. Simão M, Gavaia PJ, Camacho A, Porto G, Pinto IJ, Ea HK, et al. Intracellular iron uptake is favored in Hfe-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype. BioFactors (Oxford, England). 2019;45(4):583–97.

    Google Scholar 

  30. Camacho A, Simão M, Ea HK, Cohen-Solal M, Richette P, Branco J, et al. Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress. Osteoarthr Cartil / OARS, Osteoarthritis Research Society. 2016;24(3):494–502.

    Article  CAS  Google Scholar 

  31. Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Transl. 2021;27:33–43.

    Google Scholar 

  32. Ferreira AV, Duarte TL, Marques S, Costa P, Neves SC, dos Santos T, et al. Iron triggers the early stages of cartilage degeneration in vitro: the role of articular chondrocytes. Osteoarthr Cartil Open. 2021;3(2):100145.

  33. Lertsuwan K, Nammultriputtar K, Nanthawuttiphan S, Tannop N, Teerapornpuntakit J, Thongbunchoo J, et al. Differential effects of Fe2+ and Fe3+ on osteoblasts and the effects of 1,25(OH)2D3, deferiprone and extracellular calcium on osteoblast viability under iron-overloaded conditions. PLoS One. 2020;15(5):e0234009.

  34. Yang J, Dong D, Luo X, Zhou J, Shang P, Zhang H. Iron overload-induced osteocyte apoptosis stimulates osteoclast differentiation through increasing osteocytic RANKL production in vitro. Calcif Tissue Int. 2020;107(5):499–509.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer F, Dittmann A, Kornak U, Herbster M, Pap T, Lohmann CH, et al. Chondrocytes from osteoarthritic and chondrocalcinosis cartilage represent different phenotypes. Front Cell Dev Biol. 2021;9:622287.

  36. Griffin TM, Scanzello CR. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol. 2019;37 Suppl 120(5):57–63.

  37. Roosendaal G, Vianen ME, Wenting MJ, van Rinsum AC, van den Berg HM, Lafeber FP, et al. Iron deposits and catabolic properties of synovial tissue from patients with haemophilia. J Bone Joint Surg Br Vol. 1998;80(3):540–5.

    Article  CAS  Google Scholar 

  38. Pang L, Hayes CP, Buac K, Yoo DG, Rada B. Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps. J Immunol (Baltimore, Md: 1950). 2013;190(12):6488–6500.

  39. Ryan LM, Rachow JW, McCarty DJ. Synovial fluid ATP: a potential substrate for the production of inorganic pyrophosphate. J Rheumat. 1991;18(5):716–20.

    CAS  Google Scholar 

  40. Mortaz E, Adcock IM, Shafei H, Masjedi MR, Folkerts G. Role of P2X7 receptors in release of IL-1β: a possible mediator of pulmonary inflammation. Tanaffos. 2012;11(2):6–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, Lutz MK, Dubyak GR, Ryan LM. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther. 2013;15(5):R154.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Doherty M, Watt I, Dieppe PA. Localised chondrocalcinosis in post-meniscectomy knees. Lancet (London, England). 1982;1(8283):1207–10.

    Article  CAS  Google Scholar 

  43. Wright JA, Richards T, Srai SK. The role of iron in the skin and cutaneous wound healing. Front Pharmacol. 2014;5:156.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Geurts J, Nasi S, Distel P, Müller-Gerbl M, Prolla TA, Kujoth GC, et al. Prematurely aging mitochondrial DNA mutator mice display subchondral osteopenia and chondrocyte hypertrophy without further osteoarthritis features. Sci Rep. 2020;10:1296

  45. Zhang P, Wang S, Wang L, Shan BC, Zhang H, Yang F, et al. Hepcidin is an endogenous protective factor for osteoporosis by reducing iron levels. J Mol Endocrinol. 2018;60(4):297–306.

    Article  PubMed  Google Scholar 

  46. Jia P, Xu YJ, Zhang ZL, Li K, Li B, Zhang W, et al. Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res. 2012;30(11):1843–52.

    Article  CAS  PubMed  Google Scholar 

  47. Li J, Hou Y, Zhang S, Ji H, Rong H, Qu G, et al. Excess iron undermined bone load-bearing capacity through tumor necrosis factor-α-dependent osteoclastic activation in mice. Biomed Rep. 2013;1(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Chen B, Sun J, Jiang Y, Zhang H, Zhang P, et al. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model. Metabolism. 2018;83:167–76.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Bai B, Zhang Y. Expression of iron-regulators in the bone tissue of rats with and without iron overload. Biometals. 2018;31(5):749–57.

    Article  CAS  PubMed  Google Scholar 

  50. Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular iron is a modulator of the differentiation of osteoclast lineage cells. Calcif Tissue Int. 2016;98(3):275–83.

    Article  CAS  PubMed  Google Scholar 

  51. Ledesma-Colunga MG, Baschant U, Fiedler IAK, Busse B, Hofbauer LC, Muckenthaler MU, et al. Disruption of the hepcidin/ferroportin regulatory circuitry causes low axial bone mass in mice. Bone. 2020;137:115400.

    Article  CAS  PubMed  Google Scholar 

  52. Yang Q, Jian J, Abramson SB, Huang X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J Bone Miner Res. 2011;26(6):1188–96.

    Article  CAS  PubMed  Google Scholar 

  53. Guggenbuhl P, Fergelot P, Doyard M, Libouban H, Roth MP, Gallois Y, et al. Bone status in a mouse model of genetic hemochromatosis. Osteoporos Int. 2011;22(8):2313–9.

    Article  CAS  PubMed  Google Scholar 

  54. Doyard M, Chappard D, Leroyer P, Roth MP, Loréal O, Guggenbuhl P. Decreased bone formation explains osteoporosis in a genetic mouse model of hemochromatosiss. PLoS One. 2016;11(2):e0148292.

  55. Zhao GY, Zhao LP, He YF, Li GF, Gao C, Li K, et al. A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency. Biol Trace Elem Res. 2012;150(1-3):487–495.

  56. Yamasaki K, Hagiwara H. Excess iron inhibits osteoblast metabolism. Toxicol Lett. 2009;191(2–3):211–5.

    Article  CAS  PubMed  Google Scholar 

  57. Zarjou A, Jeney V, Arosio P, Poli M, Zavaczki E, Balla G, et al. Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res. 2010;25(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang Y, Yan Y, Wang X, Zhu G, Xu YJ. Hepcidin inhibition on the effect of osteogenesis in zebrafish. Biochem Biophys Res Commun. 2016;476(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  59. Morais S, Carvalho GS, Faria JL, Gomes HT, Sousa JP. In vitro biomineralization by osteoblast-like cells. II. Characterization of cellular culture supernatants. Biomaterials. 1998;19(1-3):23–29.

  60. Balogh E, Tolnai E, Nagy B, Nagy B, Balla G, Balla J, et al. Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016;1862(9):1640–1649.

  61. Ross JM, Kowalchuk RM, Shaulinsky J, Ross L, Ryan D, Phatak PD. Association of heterozygous hemochromatosis C282Y gene mutation with hand osteoarthritis. J Rheumatol. 2003;30(1):121–5.

    CAS  PubMed  Google Scholar 

  62. Timms AE, Sathananthan R, Bradbury L, Athanasou NA, Wordsworth BP, Brown MA. Genetic testing for haemochromatosis in patients with chondrocalcinosis. Ann Rheum Dis. 2002;61(8):745–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jordan JM. Arthritis in hemochromatosis or iron storage disease. Curr Opin Rheumatol. 2004;16(1):62-6.

  64. Barton JC, Edwards CQ, Acton RT. HFE gene: structure, function, mutations, and associated iron abnormalities. Gene. 2015;574(2):179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Menaa C, Esser E, Sprague SM. Beta2-microglobulin stimulates osteoclast formation. Kidney Int. 2008;73(11):1275–81.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, Liew CC, Marshall KW. Microarray analysis reveals the involvement of beta-2 microglobulin (B2M) in human osteoarthritis. Osteoarthr Cartil / OARS, Osteoarthritis Research Society. 2002;10(12):950–60.

    Article  CAS  Google Scholar 

  67. Egan MS, Goldenberg DL, Cohen AS, Segal D. The association of amyloid deposits and osteoarthritis. Arthritis Rheum. 1982;25(2):204–8.

    Article  CAS  PubMed  Google Scholar 

  68. Doherty M. Pyrophosphate arthropathy--recent clinical advances. Ann Rheum Dis. 1983;42 Suppl 1(Suppl 1):38–44.

  69. Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol. 2020;16(1):7–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by a VA Merit Review Grant I01BX004454 (AKR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann K. Rosenthal.

Ethics declarations

Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitton-Fitzgerald, E., Gohr, C.M., Williams, C.M. et al. Identification of Common Pathogenic Pathways Involved in Hemochromatosis Arthritis and Calcium Pyrophosphate Deposition Disease: a Review. Curr Rheumatol Rep 24, 40–45 (2022). https://doi.org/10.1007/s11926-022-01054-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-022-01054-w

Keywords

Navigation