Skip to main content

Advertisement

Log in

What Has Dual Energy CT Taught Us About Gout?

  • Crystal Arthritis (M Pillinger and M Toprover, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Dual energy computed tomography (DECT) scan has emerged as a useful diagnostic tool in the diagnosis of gout over recent years. Here, we review the role of DECT in the context of typical and atypical gout, including its role in identifying extra-articular monosodium urate (MSU) deposition.

Recent Findings

DECT has been found to be more accurate than ultrasound in detecting extra-articular MSU deposition in soft tissue. It has the ability to identify axial MSU deposition in gout patients with non-specific back pain. For individuals with no other clear etiology, this potentially implicates MSU as the cause of the pain. DECT also has the ability to detect vascular MSU deposition. This correlates with high coronary calcium scores and elevated Framingham cardiovascular risk.

Summary

DECT continues to aid our understanding of articular and extra-articular MSU deposition, including the role of vascular MSU deposition on cardiovascular health. Not only does it allow quantification of urate burden but it can also potentially avoid invasive diagnostic procedures. The limitations and advantages of DECT are further explored in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Former Football Player Tackles Gout. Arthritis Foundation, Gout Blog. http://blog.arthritis.org/gout/gout-flare-patient-story/#more-77.

  2. Ogdie A, Taylor WJ, Neogi T, Fransen J, Jansen TL, Schumacher HR, et al. Performance of ultrasound in the diagnosis of gout in a multicenter study: comparison with monosodium urate monohydrate crystal analysis as the gold standard. Arthritis Rheum. 2017;69(2):429–38. https://doi.org/10.1002/art.39959.

    Article  Google Scholar 

  3. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.

    Article  Google Scholar 

  4. Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB III, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74(6):1072–7.

    Article  CAS  Google Scholar 

  5. Chiro GD, Brooks RA, Kessler RM, et al. Tissue signatures with dual-energy computed tomography. Radiology. 1979;131(2):521–3.

    Article  CAS  Google Scholar 

  6. McDavid WD, Waggener RG, Dennis MJ, et al. Estimation of chemical composition and density from computed tomography carried out at a number of energies. Investig Radiol. 1977;12(2):189–94.

    Article  CAS  Google Scholar 

  7. Millner MR, McDavid WD, Waggener RG, et al. Extraction of information from CT scans at different energies. Med Phys. 1979;6(1):70–1.

    Article  CAS  Google Scholar 

  8. Christiansen SN, Müller FC, Østergaard M, Slot O, Møller JM, Børgesen HF, et al. Dual-energy CT in gout patients: do all colour-coded lesions actually represent monosodium urate crystals? Arthritis Res Ther. 2020;22:212. https://doi.org/10.1186/s13075-020-02283-z.

    Article  CAS  Google Scholar 

  9. Grajo JR, Patino M, et al. Dual energy CT in practice: basic principles and applications. Appl Radiol. 2016;45(7):6–12.

    Google Scholar 

  10. Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19(1):13–23. https://doi.org/10.1007/s00330-008-1122-7.

    Article  Google Scholar 

  11. Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Investig Radiol. 2008;43:112–9.

    Article  Google Scholar 

  12. Primak AN, Fletcher JG, Vrtiska TJ, Dzyubak OP, Lieske JC, Jackson ME, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol. 2007;14:1441–7.

    Article  Google Scholar 

  13. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  Google Scholar 

  14. Choi HK, Al-Arfaj AMLC, et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis. 2009;68(10):1609–12. https://doi.org/10.1136/ard.2008.099713.E.

    Article  CAS  Google Scholar 

  15. Choi HK, Burns LC, Shojania K, Koenig N, Reid G, Abufayyah M, et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis. 2012;71:1466–71.

    Article  Google Scholar 

  16. Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB III, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015 Jun;74(6):1072–7. https://doi.org/10.1136/annrheumdis-2013-205095.

    Article  CAS  Google Scholar 

  17. Ramon A, Bohm-Sigrand A, Pottecher P, Richette P, Maillefert JF, Devilliers H, et al. Role of dual-energy CT in the diagnosis and follow-up of gout: systematic analysis of the literature. Clin Rheumatol. 2018;37:587–95. https://doi.org/10.1007/s10067-017-3976-z.

    Article  Google Scholar 

  18. Yu Z, Mao T, Xu Y, Li T, Wang Y, Gao F, et al. Diagnostic accuracy of dual-energy CT in gout: a systematic review and meta-analysis. Skelet Radiol. 2018;47:1587–93. https://doi.org/10.1007/s00256-018-2948-y.

    Article  Google Scholar 

  19. Huppertz A, Hermann KGA, Diekhoff T, Wagner M, Hamm B, Schmidt WA. Systemic staging for urate crystal deposits with dual-energy CT and ultrasound in patients with suspected gout. Rheumatol Int. 2014;34:763–71. https://doi.org/10.1007/s00296-014-2979-1.

    Article  CAS  Google Scholar 

  20. Ogdie A, Taylor WJ, Weatherall M, Fransen J, Jansen TL, Neogi T, et al. Imaging modalities for the classification of gout: systematic literature review and meta-analysis. Ann Rheum Dis. 2015;74:1868–74.

    Article  Google Scholar 

  21. Jasvinder A Singh, Jean-François Budzik, Fabio Becce, Tristan Pascart, Dual-energy computed tomography vs ultrasound, alone or combined, for the diagnosis of gout: a prospective study of accuracy, Rheumatology, 2021;, keaa923, https://doi.org/10.1093/rheumatology/keaa923

  22. Pascart T, Grandjean A, Capon B, Legrand J, Namane N, Ducoulombier V, et al. Monosodium urate burden assessed with dual-energy computed tomography predicts the risk of flares in gout: a 12-month observational study. Arthritis Res Ther. 2018;20:210. https://doi.org/10.1186/s13075-018-1714-9.

    Article  CAS  Google Scholar 

  23. Baer AN, Kurano T, Thakur UJ, Thawait GK, Fuld MK, Maynard JW, et al. Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC Musculoskelet Disord. 2016;17:91. https://doi.org/10.1186/s12891-016-0943-9.

    Article  Google Scholar 

  24. Dalbeth N, Kalluru R, Aati O, Horne A, Doyle AJ, McQueen FM. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann Rheum Dis. 2013;72:1545–8.

    Article  Google Scholar 

  25. De Vulder N, Chen M, Huysse W, Herregods N, Verstraete K, Jans L. Case series: dual-energy CT in extra-articular manifestations of gout: main teaching point: dual-energy CT is a valuable asset in the detection of extra-articular manifestations of gout. J Belg Soc Radiol. 2020;104(1):27. https://doi.org/10.5334/jbsr.2113.

    Article  Google Scholar 

  26. Klauser AS, Halpern EJ, Strobl S, Abd Ellah MMH, Gruber J, Bellmann-Weiler R, et al. Gout of hand and wrist: the value of US as compared with DECT. Eur Radiol. 2018;28:4174–81. https://doi.org/10.1007/s00330-018-5363-9.

    Article  Google Scholar 

  27. Glazebrook KN, Guimaraes LS, et al. Identification of intra-articular and periarticular uric acid crystals with DECT: initial evaluation. Radiology. 2011;261(2):516–24. https://doi.org/10.1148/radiol.11102485.

    Article  Google Scholar 

  28. Kersley GD, Mandel L, Jeffrey MR. Gout; an unusual case with softening and subluxation of the first cervical vertebra and splenomegaly. Ann Rheum Dis. 1950;9:282–304.

    Article  CAS  Google Scholar 

  29. Yoon JW, Park KB, Park H, Kang DH, Lee CH, Hwang SH, et al. Tophaceous gout of the spine causing neural compression. Korean J Spine. 2013;10:185–8.

    Article  Google Scholar 

  30. Toprover M, Krasnokutsky S, Pillinger MH. Gout in the spine: imaging, diagnosis, and outcomes. Curr Rheumatol Rep. 2015;17:70.

    Article  Google Scholar 

  31. Dhaese S, Stryckers M, et al. Gouty arthritis of the spine in a renal transplant patient: a clinical case report: an unusual presentation of a common disorder. Medicine (Baltimore). 2015;94:e676.

    Article  Google Scholar 

  32. Parikh P, Butendieck R, Kransdorf M, Calamia K. Detection of lumbar facet joint gouty arthritis using dual-energy computed tomography. J Rheumatol. 2010;37:2190–1.

    Article  Google Scholar 

  33. Law G, Abufayyah M, et al. Dual energy computed tomography scans of the spine in patients with tophaceous gout. Ann Rheum Dis. 2011;70:152.

    Google Scholar 

  34. Chotard E, Sverzut J, Liote F, et al. THU0424 Gout at the spine: a retrospective study with dual-energy computed tomography. Ann Rheum Dis. 2017;76:367–8.

    Google Scholar 

  35. Toprover M, Slobodnick A et al. Gout and serum urate levels are associated with lumbar spine monosodium urate deposition and chronic low back pain: a dual-energy CT study [abstract]. Arthritis Rheumatol. 2019; 71(suppl 10).

  36. Adler S, Seitz M. The gouty spine: old guy—new tricks. Rheumatology. December 2017;56(12):2243–5. https://doi.org/10.1093/rheumatology/kex325.

    Article  Google Scholar 

  37. Sullivan JI, Pillinger MH, Toprover M. Spinal urate deposition in a patient with gout and nonspecific low back pain: response to initiation of gout therapy. J Clin Rheumatol. 2020. https://doi.org/10.1097/RHU.0000000000001444.

  38. Abbott RD, Brand FN, Kannel WB, Castelli WP. Gout and coronary heart disease: the Framingham study. J Clin Epidemiol. 1988;41:237–42.

    Article  CAS  Google Scholar 

  39. Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54:2688–96.

    Article  CAS  Google Scholar 

  40. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116:894–900.

    Article  Google Scholar 

  41. Kuo CF, Yu KH, See LC, Chou IJ, Ko YS, Chang HC, et al. Risk of myocardial infarction among patients with gout: a nationwide population-based study. Rheumatology. 2013;52:111–7.

    Article  Google Scholar 

  42. Krishnan E, Pandya BJ, Lingala B, Hariri A, Dabbous O. Hyperuricemia and untreated gout are poor prognostic markers among those with a recent acute myocardial infarction. Arthritis Res Ther. 2012 Jan 17;14(1):R10.

    Article  Google Scholar 

  43. Casiglia E, Tikhonoff V, Virdis A, Masi S, Barbagallo CM, Bombelli M, et al. Serum uric acid and fatal myocardial infarction: detection of prognostic cut-off values: the URRAH (Uric acid right for heart health) study. J Hypertens. 2020 Mar;38(3):412–9.

    Article  CAS  Google Scholar 

  44. Colantonio LD, Saag KG, Singh JA, Chen L, Reynolds RJ, Gaffo A, et al. Gout is associated with an increased risk for incident heart failure among older adults: the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort study. Arthritis Res Ther. 2020;22:86.

    Article  Google Scholar 

  45. Singh JA, Ramachandaran R, Yu S, Yang S, Xie F, Yun H, et al. Is gout a risk equivalent to diabetes for stroke and myocardial infarction? A retrospective claims database study. Arthritis Res Ther. 2017;19:228. https://doi.org/10.1186/s13075-017-1427-5.

    Article  CAS  Google Scholar 

  46. Kuo C-F, Grainge MJ, Mallen C, Zhang W, Doherty M. Impact of gout on the risk of atrial fibrillation. Rheumatology. April 2016;55(4):721–8. https://doi.org/10.1093/rheumatology/kev418.

    Article  Google Scholar 

  47. Pund EE, Hawley RL, et al. Gouty heart. N Engl J Med. 1960;263:835–8.

    Article  Google Scholar 

  48. Hench PS, Darnall CM. A clinic on acute old-fashioned gout; with special reference to its inciting factors. Med Clin N Amer. 1933;16:1371–93.

    Google Scholar 

  49. LaMoreaux, B, Chandrasekaran V. Gout causing urate cardiac vegetations: summary of published cases. Ann. Rheum. Dis. 2019, 78 (Suppl. 2).

  50. Frustaci A, Russo MA, Sansone L, Francone M, Verardo R, Grande C, et al. Heart failure from gouty myocarditis: a case report. Ann Intern Med. 2020;172:363–5.

    Article  Google Scholar 

  51. Park JJ, Roudier MP, Soman D, Mokadam NA, Simkin PA. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014;4:e005308.

    Article  Google Scholar 

  52. Patetsios P, Song M, Shutze WP, Pappas C, Rodino W, Ramirez JA, et al. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol. 2001;88:188–91.

    Article  CAS  Google Scholar 

  53. Patetsios P, Rodino W, et al. Identification of uric acid in aortic aneurysms and atherosclerotic artery. Ann N Y Acad Sci. 1996;800:243–5.

    Article  CAS  Google Scholar 

  54. Barazani S, Chi W, Pyzik R, Jacobi A, O’Donnell T, Fayad Z, et al. Detection of uric acid crystals in the vasculature of patients with gout using dual-energy computed tomography (abstract). Arthritis Rheum. 2018;70(Suppl. 9):3584.

    Google Scholar 

  55. Klauser AS, Halpern EJ, Strobl S, Gruber J, Feuchtner G, Bellmann-Weiler R, et al. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019;4:1019–28.

    Article  Google Scholar 

  56. Lee KA, Ryu SR, Park SJ, Kim HR, Lee SH. Assessment of cardiovascular risk profile based on measurement of tophus volume in patients with gout. Clin Rheumatol. 2018;37:1351–8. https://doi.org/10.1007/s10067-017-3963-4.

    Article  Google Scholar 

  57. Dual-energy PearsonD CT: is it what the doctor ordered for the cost-conscious community hospital? Radiology Business. https://www.radiologybusiness.com/sponsored/1081/topics/economics/dual-energy-ct-it-what-doctor-ordered-cost-conscious-community.

  58. Canellas R, Digumarthy S, Tabari A, Otrakji A, McDermott S, Flores EJ, et al. Radiation dose reduction in chest dual-energy computed tomography: effect on image quality and diagnostic information. Radiol Bras. 2018 Nov-Dec;51(6):377–84.

    Article  Google Scholar 

  59. Johnson TR, Fink C, Schonberg SO, Reiser MF. Dual energy CT in clinical practice. 1st ed. New York, NY: Springer-Verlag; 2011.

    Book  Google Scholar 

  60. Tashakkor AY, Wang JT, Tso D, Choi HK, Nico-laou S. Dual-energy computed tomography: a valid tool in the assessment of gout? Int J Clin Rheumatol. 2012;7:73–9.

    Article  Google Scholar 

  61. Mallinson PI, Coupal T, Reisinger C, Chou H, Munk PL, Nicolaou S, et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol. 2014 Jul;203(1):W103–9. https://doi.org/10.2214/AJR.13.11396.

    Article  Google Scholar 

  62. Svensson E, Aurell Y, Jacobsson LTH, Landgren A, Sigurdardottir V, Dehlin M. Dual energy CT findings in gout with rapid kilovoltage-switching source with gemstone scintillator detector. BMC Rheumatol. 2020;4:7. https://doi.org/10.1186/s41927-019-0104-5.

    Article  Google Scholar 

  63. Jia E, Zhu J, Huang W, Chen X, Li J. Dual-energy computed tomography has limited diagnostic sensitivity for short-term gout. Clin Rheumatol. 2018;37:773–7. https://doi.org/10.1007/s10067-017-3753-z.

    Article  Google Scholar 

  64. Neogi T, Jansen TLTA, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, et al. 2015 Gout Classification Criteria: an American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2015;67(10):2557–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Khanna.

Ethics declarations

Conflict of Interest

The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. Author names: Ira Khanna, Rebecca Pietro, Yousaf Ali.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“As a former football player and wrestler who had had three knee operations, Scott thought he knew pain. Then he had his first gout attack.” [1]. Excerpt from the Arthritis Foundation blog highlighting the excruciating experience that is gout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, I., Pietro, R. & Ali, Y. What Has Dual Energy CT Taught Us About Gout?. Curr Rheumatol Rep 23, 71 (2021). https://doi.org/10.1007/s11926-021-01035-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-01035-5

Keywords

Navigation