Skip to main content

Advertisement

Log in

Innate Immune Responses and Osteoarthritis

  • Osteoarthritis (M Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Osteoarthritis (OA) is a chronic, painful joint disease that affects approximately 40% of adults over 70 year. Age is the strongest predictor of OA, while obesity is considered the primary preventable risk factor for OA. Both conditions are associated with abnormal innate immune inflammatory responses that contribute to OA progression and are the focus of this review.

Recent Findings

Recent studies have identified risk factors for OA progression including increased innate immune responses secondary to aging-associated myeloid skewing, obesity-related myeloid activation, and synovial tissue hyperplasia with activated macrophage infiltration. Toll-like receptor (TLR)4-induced catabolic responses also play a significant role in OA.

Summary

The complex interplay between obesity and aging-associated macrophage activation, pro-inflammatory cytokine production from TLR-driven responses, and adipokines leads to a vicious cycle of synovial hyperplasia, macrophage activation, cartilage catabolism, infrapatellar fat pad fibrosis, and joint destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

DMOADs:

Disease-modifying anti-osteoarthritis drugs

TLR:

Toll-like receptor

IL:

Interleukin

TNF-α:

Tumor necrosis factor-alpha

LPS:

Lipopolysaccharide

IFP:

Infrapatellar fat pad

PGE2:

Prostaglandin E2

BMI:

Body mass index

MMPs:

Metalloproteinases

DMM:

Destabilized medial meniscus

HFD:

High-fat diet

CIs:

Confidence intervals

ceMRI:

Contrast-enhanced MRI

US:

Ultrasound

SPECT-CT:

Single-photon emission computed tomography

Nf-ĸB:

Nuclear factor kappa-light-chain enhancer of activated B cells

iNOS:

Nitric oxide synthase

COX-2:

Cyclooxygenase-2

CCL:

Chemokine (C-C motif) ligand

CXCL:

C-X-C motif chemokine ligand

IL-1Ra:

Interleukin 1 receptor antagonist

IP-10:

Interferon-gamma-inducible protein

MCP-1:

Monocyte chemotactic protein-1

DAMPS:

Danger-associated molecular patterns

HMGB1:

Hyaluronan and high-mobility group box chromosomal protein

FFA:

Free fatty acids

SDF1:

Stromal-derived-factor-1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society. 2013;21(1):16–21.

    Article  CAS  Google Scholar 

  2. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet dis. 2013;5(2):77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing dev. 2007;128(1):92–105.

    Article  CAS  PubMed  Google Scholar 

  4. Florez H, Troen BR. Fat and inflammaging: a dual path to unfitness in elderly people? J am Geriatr Soc. 2008;56(3):558–60.

    Article  PubMed  Google Scholar 

  5. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  CAS  PubMed  Google Scholar 

  6. Visser M. Higher levels of inflammation in obese children. Nutrition. 2001;17(6):480–1.

    Article  CAS  PubMed  Google Scholar 

  7. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. Jama. 1999;282(22):2131–5.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;10:580–592.

  10. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr rev. 2007;65(12 Pt 2):S173–6.

    Article  PubMed  Google Scholar 

  11. Franceschi C, Bonafe M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  12. Gomez CR, Hirano S, Cutro BT, et al. Advanced age exacerbates the pulmonary inflammatory response after lipopolysaccharide exposure. Crit Care med. 2007;35(1):246–51.

    Article  CAS  PubMed  Google Scholar 

  13. Gomez CR, Nomellini V, Baila H, Oshima K, Kovacs EJ. Comparison of the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: scald injury versus i.p. LPS administration. Shock. 2009;31(2):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu D, Ren Z, Pae M, et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007;179(7):4829–39.

    Article  CAS  PubMed  Google Scholar 

  15. Chuckpaiwong B, Charles HC, Kraus VB, Guilak F, Nunley JA. Age-associated increases in the size of the infrapatellar fat pad in knee osteoarthritis as measured by 3T MRI. J Orthop res. 2010;28(9):1149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cowan SM, Hart HF, Warden SJ, Crossley KM. Infrapatellar fat pad volume is greater in individuals with patellofemoral joint osteoarthritis and associated with pain. Rheumatol Int. 2015;35(8):1439–42.

    Article  PubMed  Google Scholar 

  17. Pan F, Han W, Wang X, et al. A longitudinal study of the association between infrapatellar fat pad maximal area and changes in knee symptoms and structure in older adults. Ann Rheum dis. 2015;74(10):1818–24.

    Article  PubMed  Google Scholar 

  18. Han W, Cai S, Liu Z, et al. Infrapatellar fat pad in the knee: is local fat good or bad for knee osteoarthritis? Arthritis Res Ther. 2014;16(4):R145.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cai J, Xu J, Wang K, et al. Association between infrapatellar fat pad volume and knee structural changes in patients with knee osteoarthritis. J Rheumatol. 2015;42(10):1878–84.

    Article  CAS  PubMed  Google Scholar 

  20. Teichtahl AJ, Wulidasari E, Brady SR, et al. A large infrapatellar fat pad protects against knee pain and lateral tibial cartilage volume loss. Arthritis Res Ther. 2015;17:318.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Han W, Wang X, et al. Mass effect and signal intensity alteration in the suprapatellar fat pad: associations with knee symptoms and structure. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society. 2014;22(10):1619–26.

    Article  CAS  Google Scholar 

  22. • Eymard F, Pigenet A, Citadelle D, et al. Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann Rheum Dis. 2017;76(6):1142–1148. This study provides the first evidence that intra-articular fat tissue differs from subcutaneous fat in terms of inflammation, vascularization, and leukocyte infiltration.

  23. Fu Y, Huebner JL, Kraus VB, Griffin TM. Effect of aging on adipose tissue inflammation in the knee joints of F344BN rats. J Gerontol Ser A Biol Sci Med Sci. 2016;71(9):1131–1140.

  24. Gross JB, Guillaume C, Gegout-Pottie P, et al. The infrapatellar fat pad induces inflammatory and degradative effects in articular cells but not through leptin or adiponectin. Clin Exp Rheumatol. 2017;35(1):53–60.

    PubMed  Google Scholar 

  25. Bastiaansen-Jenniskens YM, Clockaerts S, Feijt C, et al. Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage. Ann Rheum dis. 2012;71(2):288–94.

    Article  CAS  PubMed  Google Scholar 

  26. • Barboza E, Hudson J, Chang WP, et al. Pro-fibrotic infrapatellar fat pad remodeling without M1-macrophage polarization precedes knee osteoarthritis in diet-induced obese mice. Arthritis Rheumatol. 2017;69(6):1221–1232. This study reveals that high fat diet in male C57BL/6 mice induces infrapatellar fat pad fibrosis but not M1 macrophage polarization or infiltration.

  27. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Obesity and knee osteoarthritis. The Framingham study. Ann Intern med. 1988;109(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  28. Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports med. 2005;39(1):4–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern med. 2000;133(8):635–46.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveria SA, Felson DT, Cirillo PA, Reed JI, Walker AM. Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology. 1999;10(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy L, Schwartz TA, Helmick CG, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 2008;59(9):1207–13.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ. Weight loss reduces the risk for symptomatic knee osteoarthritis in women. The Framingham study. Ann Intern med. 1992;116(7):535–9.

    Article  CAS  PubMed  Google Scholar 

  33. Toda Y, Toda T, Takemura S, Wada T, Morimoto T, Ogawa R. Change in body fat, but not body weight or metabolic correlates of obesity, is related to symptomatic relief of obese patients with knee osteoarthritis after a weight control program. J Rheumatol. 1998;25(11):2181–6.

    CAS  PubMed  Google Scholar 

  34. Richter M, Trzeciak T, Owecki M, Pucher A, Kaczmarczyk J. The role of adipocytokines in the pathogenesis of knee joint osteoarthritis. Int Orthop. 2015;39(6):1211–7.

    Article  PubMed  Google Scholar 

  35. Poonpet T, Honsawek S. Adipokines: biomarkers for osteoarthritis? World J Orthop. 2014;5(3):319–27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buckwalter JA, Lotz M, Stoltz J-F. Osteoarthritis, inflammation and degradation: a continuum, vol. 70. Washington, DC: IOS; 2007.

    Google Scholar 

  37. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11(10):747–55.

    Article  CAS  PubMed  Google Scholar 

  38. You T, Nicklas BJ. Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr Diabetes rev. 2006;2(1):29–37.

    Article  PubMed  Google Scholar 

  39. • Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P, Martin-Gonzalez J, Segura-Egea JJ, Sanchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017. Mar 4. pii: S1359–6101(16)30163–0. doi:10.1016/j.cytogfr.2017.03.001 [Epub ahead of print]. An excellent review on the metabolic and immunomodulatory effects of leptin.

  40. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society. 2006;14(7):690–5.

    Article  CAS  Google Scholar 

  41. Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118–29.

    Article  CAS  PubMed  Google Scholar 

  42. Griffin TM, Huebner JL, Kraus VB, Guilak F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 2009;60(10):2935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo Y, Liu M. Adiponectin: a versatile player of innate immunity. J Mol Cell Biol. 2016;8(2):120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yusuf E, Ioan-Facsinay A, Bijsterbosch J, et al. Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann Rheum dis. 2011;70(7):1282–4.

    Article  CAS  PubMed  Google Scholar 

  45. Calvet J, Orellana C, Gratacos J, et al. Synovial fluid adipokines are associated with clinical severity in knee osteoarthritis: a cross-sectional study in female patients with joint effusion. Arthritis Res Ther. 2016;18(1):207.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Staikos C, Ververidis A, Drosos G, Manolopoulos VG, Verettas D-A, Tavridou A. The association of adipokine levels in plasma and synovial fluid with the severity of knee osteoarthritis. Rheumatology. 2013;52(6):1077–83.

    Article  CAS  PubMed  Google Scholar 

  47. de Boer TN, van Spil WE, Huisman AM, et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society. 2012;20(8):846–53.

    Article  Google Scholar 

  48. •• Sarmanova A, Hall M, Moses J, Doherty M, Zhang W. Synovial changes detected by ultrasound in people with knee osteoarthritis—a meta-analysis of observational studies. Osteoarthr Cartil. 2016;24(8):1376–83. This meta-analysis includes 24 studies and concludes that ultrasound-detected knee effusions, synovial hypertrophy, and Doppler signals correlate with significantly increased prevalence of OA compared to asymptomatic controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wallace G, Cro S, Dore C, et al. Associations between clinical evidence of inflammation and synovitis in symptomatic knee osteoarthritis: a substudy of the VIDEO trial. Arthritis Care Res (Hoboken). 2016. Dec 20. doi:10.1002/acr.23162. [Epub ahead of print].

  50. Jaremko JL, Jeffery D, Buller M, et al. Preliminary validation of the knee inflammation MRI scoring system (KIMRISS) for grading bone marrow lesions in osteoarthritis of the knee: data from the osteoarthritis initiative. RMD Open. 2017;3(1):e000355.

    Article  PubMed  PubMed Central  Google Scholar 

  51. •• Damman W, Liu R, Bloem JL, Rosendaal FR, Reijnierse M, Kloppenburg M. Bone marrow lesions and synovitis on MRI associate with radiographic progression after 2 years in hand osteoarthritis. Ann Rheum dis. 2017;76(1):214–7. This study shows that bone lesions of grade 2/3 and synovitis of the distal and proximal interphalangeal joints detected by contrast-enhanced MRI are associated with radiographic progression at 2 years.

    Article  CAS  PubMed  Google Scholar 

  52. Liu R, Damman W, Reijnierse M, Bloem JL, Rosendaal FR, Kloppenburg M. Bone marrow lesions on magnetic resonance imaging in hand osteoarthritis are associated with pain and interact with synovitis. Osteoarthr Cartil. 2017. Feb 12. pii S1063–4584(17)30853 [Epub ahead of print].

  53. Mancarella L, Addimanda O, Cavallari C, Meliconi R. Synovial inflammation drives structural damage in hand osteoarthritis: a narrative literature review. Curr Rheumatol Rev. 2016. Dec 9 [Epub ahead of print].

  54. •• Felson DT, Niu J, Neogi T, et al. Synovitis and the risk of knee osteoarthritis: the MOST study. Osteoarthr Cartil. 2016;24(3):458–64. Synovitis grade >3 (0-9) on baseline MRIs (OR 1.6, 95% CI 1.2, 2.1, p = 003) increased the risk of incident OA at 84 months.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma L, Hochberg M, Nevitt M, et al. Knee tissue lesions and prediction of incident knee osteoarthritis over 7 years in a cohort of persons at higher risk. Osteoarthr Cartil. 2017. Feb 14. pii. S1063–4584(17)30551–8 [Epub ahead of print].

  56. • Kraus VB, Mc Daniel G, Huebner JL, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis and Cartilage / OARS, Osteoarthritis Research Society. 2016;24(9):1613–21. This study provides the first direct evidence for infiltration of activated macrophages in knee OA. Increasing numbers of activated macrophages were associated with increases in radiographic knee severity and with pain severity.

    Article  CAS  Google Scholar 

  57. Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, Marker-Hermann E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 1996;14(2):155–62.

    CAS  PubMed  Google Scholar 

  58. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  59. Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.

    CAS  PubMed  Google Scholar 

  60. Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone. 2016;85:81–90.

    Article  CAS  PubMed  Google Scholar 

  61. • Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The multifunctional role of the chemokine system in arthritogenic processes. Curr Rheumatol Rep. 2017;19(3):11. Excellent and comprehensive review of chemokines in arthritis.

    Article  PubMed  Google Scholar 

  62. Kim HA, Cho ML, Choi HY, et al. The catabolic pathway mediated by toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 2006;54(7):2152–63.

    Article  CAS  PubMed  Google Scholar 

  63. Schelbergen RF, Blom AB, van den Bosch MH, et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on toll-like receptor 4. Arthritis Rheum. 2012;64(5):1477–87.

    Article  CAS  PubMed  Google Scholar 

  64. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62(7):2004–12.

    PubMed  PubMed Central  Google Scholar 

  65. Gomez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat rev Rheumatol. 2015;11(3):159–70.

    Article  CAS  PubMed  Google Scholar 

  66. Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet dis. 2012;4(4):269–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sohn DH, Sokolove J, Sharpe O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via toll-like receptor 4. Arthritis res Ther. 2012;14(1):R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim F, Pham M, Luttrell I, et al. Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ res. 2007;100(11):1589–96.

    Article  CAS  PubMed  Google Scholar 

  69. Harte AL, da Silva NF, Creely SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond). 2010;7:15.

    Article  Google Scholar 

  70. Barreto G, Sandelin J, Salem A, Nordstrom DC, Waris E. Toll-like receptors and their soluble forms differ in the knee and thumb basal osteoarthritic joints. Acta Orthop. 2017;17:1–8.

    Google Scholar 

  71. Furman BD, Strand J, Hembree WC, Ward BD, Guilak F, Olson SA. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J Orthop res. 2007;25(5):578–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by VA PECASE Award (MBH), Presbyterian Health Foundation Bridge Award (MBH), NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grant R03AR066828 and National Institute on Aging grant R01AG049058) (TMG), and Children’s Hospital Foundation Award (EK).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.

Corresponding author

Correspondence to Mary Beth Humphrey.

Ethics declarations

Conflict of Interest

E. Kalaitzoglou, T.M. Griffin, and M.B. Humphrey declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary human or animal studies.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaitzoglou, E., Griffin, T.M. & Humphrey, M.B. Innate Immune Responses and Osteoarthritis. Curr Rheumatol Rep 19, 45 (2017). https://doi.org/10.1007/s11926-017-0672-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-017-0672-6

Keywords

Navigation